精英家教网 > 高中数学 > 题目详情
若△ABC的三个内角满足sinA:sinB:sinC=5:12:13,则△ABC(  )
分析:根据题意,结合正弦定理可得a:b:c=4:6:8,利用勾股定理判断三角形是直角三角形即可.
解答:解:∵角A、B、C满足sinA:sinB:sinC=5:12:13,
∴根据正弦定理,整理得a:b:c=5:12:13
设a=5x,b=12x,c=13x,
满足(5x)2+(12x)2=(13x)2
因此,△ABC是直角三角形
故选:B.
点评:本题给出三角形个角正弦的比值,判断三角形的形状,着重考查了利用正弦定理解三角形的知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、若△ABC的三个内角满足sinA:sinB:sinC=5:12:13,则△AB形状一定是
直角
角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=2:3:4,则△ABC(  )
A、一定是直角三角形B、一定是钝角三角形C、一定是锐角三角形D、可能是锐角三角形,也可能是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角成等差数列,三边成等比数列,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)若△ABC的三个内角的正弦值分别等于△A'B'C'的三个内角的余弦值,则△ABC的三个内角从大到小依次可以为
4
π
8
π
8
4
,另两角不惟一,但其和为
π
4
4
π
8
π
8
4
,另两角不惟一,但其和为
π
4
(写出满足题设的一组解).

查看答案和解析>>

同步练习册答案