17£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬ÇÒÒÔ³¤ÖáºÍ¶ÌÖáΪ¶Ô½ÇÏßµÄËıßÐεÄÃæ»ýΪ6£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãQ£¨1£¬0£©×÷Ö±Ïßl£¨²»ÓëxÖá´¹Ö±£©Óë¸ÃÍÖÔ²½»ÓÚM£¬NÁ½µã£¬ÓëyÖá½»ÓÚµãR£¬Èô$\overrightarrow{RM}$=¦Ë$\overrightarrow{MQ}$£¬$\overrightarrow{RN}$=¦Ì$\overrightarrow{NQ}$£¬Çó¦Ë+¦ÌµÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâÉè³öÍÖÔ²CµÄ·½³Ì£¬½áºÏÒÑÖªºÍÒþº¬Ìõ¼þÁÐʽÇó³ö³¤°ëÖáºÍ¶Ì°ëÖáµÄ³¤£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©Éè³öÖ±ÏßlµÄ·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬°Ñ$\overrightarrow{RM}$=¦Ë$\overrightarrow{MQ}$£¬$\overrightarrow{RN}$=¦Ì$\overrightarrow{NQ}$ת»¯Îª×ø±ê±íʾ£¬´úÈë¸ùÓëϵÊýµÄ¹ØϵÇóµÃ¦Ë+¦ÌµÄÖµ£®

½â´ð ½â£º£¨1£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌÊÇ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$£¬Ôò
$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2\sqrt{2}}{3}}\\{\frac{1}{2}•2a•2b=6}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ£ºa=3£¬b=1£¬
¹ÊÍÖÔ²µÄ·½³ÌÊÇ£º$\frac{{x}^{2}}{9}+{y}^{2}=1$£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$£¬µÃ£º£¨9k2+1£©x2-18k2x+9k2-9=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{18{k}^{2}}{9{k}^{2}+1}£¬{x}_{1}{x}_{2}=\frac{9{k}^{2}-9}{9{k}^{2}+1}$£¬
¶øR£¨0£¬-k£©£®
ÓÉ$\overrightarrow{RM}$=¦Ë$\overrightarrow{MQ}$£¬ÓУº£¨x1£¬y1+k£©=¦Ë£¨1-x1£¬y1£©£¬¹Ê$¦Ë=\frac{{x}_{1}}{1-{x}_{1}}$£¬
ÓÉ$\overrightarrow{RN}$=¦Ì$\overrightarrow{NQ}$£¬ÓУº£¨x2£¬y2+k£©=¦Ì£¨1-x2£¬y2£©£¬¹Ê$¦Ì=\frac{{x}_{2}}{1-{x}_{2}}$£®
¡à¦Ë+¦Ì=$\frac{£¨{x}_{1}+{x}_{2}£©-2{x}_{1}{x}_{2}}{1-£¨{x}_{1}+{x}_{2}£©+{x}_{1}{x}_{2}}$=$\frac{\frac{18{k}^{2}}{9{k}^{2}+1}-\frac{2£¨9{k}^{2}-9£©}{9{k}^{2}+1}}{1-\frac{18{k}^{2}}{9{k}^{2}+1}+\frac{9{k}^{2}-9}{9{k}^{2}+1}}=\frac{18}{9{k}^{2}+1-18{k}^{2}+9{k}^{2}-9}$=$-\frac{9}{4}$£®
¹Ê$¦Ë+¦Ì=-\frac{9}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬°ÑÏòÁ¿¹²Ïßת»¯Îª×ø±ê±íʾÊǽâ´ð¸ÃÌâµÄ¹Ø¼ü£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³Ð¡Çø¹²ÓÐ1000»§¾ÓÃñ£¬ÏÖ¶ÔËûÃǵÄÓõçÇé¿ö½øÐе÷²é£¬µÃµ½ÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬Ôò¸ÃСÇø¾ÓÃñÓõçÁ¿µÄÖÐλÊýΪ155£¬Æ½¾ùÊýΪ156.8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ò»¸öѧÉúͨ¹ýijÖÖÓ¢ÓïÌýÁ¦²âÊԵĸÅÂÊÊÇ$\frac{1}{2}$£¬ËûÁ¬Ðø²âÊÔ2´Î£¬ÄÇôÆäÖÐÇ¡ÓÐ1´Î»ñµÃͨ¹ýµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{4}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô²»µÈʽax2-x+c£¾0µÄ½âΪ{x|-1£¼x£¼$\frac{2}{3}$}£¬Ôòa+c=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®É輯ºÏA={x¡ÊN|$\frac{6}{3-x}$¡ÊZ}£¬B={£¨x£¬y£©|x+y=3£¬x¡ÊN£¬y¡ÊN}£¬ÔòÓÃÁоٷ¨±íʾA={0£¬1£¬2£¬4£¬5£¬6£¬9}£¬B={£¨0£¬3£©£¬£¨1£¬2£©£¬£¨2£¬1£©£¬£¨3£¬0£©}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼£¬ÆäÕý̬·Ö²¼ÃܶÈÇúÏßΪº¯Êýf£¨x£©=$\frac{1}{\sqrt{2¦Ð}}$e${\;}^{\frac{-£¨x-2£©^{2}}{2}}$µÄͼÏó£¬Èô${¡Ò}_{0}^{2}$f£¨x£©dx=$\frac{1}{3}$£¬ÔòP£¨X£¾4£©=£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{4}$C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®É躯Êýf£¨x£©=x2+bln£¨x+1£©£¬ÆäÖÐb¡Ù0£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Ö¤Ã÷£ºµ±b=1ʱ£¬¶ÔÓÚÈÎÒâµÄx1£¬x2¡Ê[1£¬+¡Þ£©£¬ÇÒx1¡Ùx2¶¼ÓÐ$\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}£¾\frac{5}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÃüÌâp£º?a¡Ê[1£¬2]£¬m2-10m+19¡Ü$\sqrt{{a}^{2}+8}$£»ÃüÌâq£ºº¯Êýf£¨x£©=3x2+2mx+m+6ÓÐÁ½¸öÁãµã£®Çóʹ¡°p¡Ä©Vq¡±ÎªÕæÃüÌâÊÇʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªf£¨x£©=a2x+$\frac{b}{x}$£¨ab¡Ù0£©£¬f£¨2£©=4£¬Ôòf£¨-2£©=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸