·ÖÎö £¨1£©ÓÉÌâÒâÉè³öÍÖÔ²CµÄ·½³Ì£¬½áºÏÒÑÖªºÍÒþº¬Ìõ¼þÁÐʽÇó³ö³¤°ëÖáºÍ¶Ì°ëÖáµÄ³¤£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©Éè³öÖ±ÏßlµÄ·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬°Ñ$\overrightarrow{RM}$=¦Ë$\overrightarrow{MQ}$£¬$\overrightarrow{RN}$=¦Ì$\overrightarrow{NQ}$ת»¯Îª×ø±ê±íʾ£¬´úÈë¸ùÓëϵÊýµÄ¹ØϵÇóµÃ¦Ë+¦ÌµÄÖµ£®
½â´ð ½â£º£¨1£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌÊÇ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$£¬Ôò
$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2\sqrt{2}}{3}}\\{\frac{1}{2}•2a•2b=6}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ£ºa=3£¬b=1£¬
¹ÊÍÖÔ²µÄ·½³ÌÊÇ£º$\frac{{x}^{2}}{9}+{y}^{2}=1$£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$£¬µÃ£º£¨9k2+1£©x2-18k2x+9k2-9=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{18{k}^{2}}{9{k}^{2}+1}£¬{x}_{1}{x}_{2}=\frac{9{k}^{2}-9}{9{k}^{2}+1}$£¬
¶øR£¨0£¬-k£©£®
ÓÉ$\overrightarrow{RM}$=¦Ë$\overrightarrow{MQ}$£¬ÓУº£¨x1£¬y1+k£©=¦Ë£¨1-x1£¬y1£©£¬¹Ê$¦Ë=\frac{{x}_{1}}{1-{x}_{1}}$£¬
ÓÉ$\overrightarrow{RN}$=¦Ì$\overrightarrow{NQ}$£¬ÓУº£¨x2£¬y2+k£©=¦Ì£¨1-x2£¬y2£©£¬¹Ê$¦Ì=\frac{{x}_{2}}{1-{x}_{2}}$£®
¡à¦Ë+¦Ì=$\frac{£¨{x}_{1}+{x}_{2}£©-2{x}_{1}{x}_{2}}{1-£¨{x}_{1}+{x}_{2}£©+{x}_{1}{x}_{2}}$=$\frac{\frac{18{k}^{2}}{9{k}^{2}+1}-\frac{2£¨9{k}^{2}-9£©}{9{k}^{2}+1}}{1-\frac{18{k}^{2}}{9{k}^{2}+1}+\frac{9{k}^{2}-9}{9{k}^{2}+1}}=\frac{18}{9{k}^{2}+1-18{k}^{2}+9{k}^{2}-9}$=$-\frac{9}{4}$£®
¹Ê$¦Ë+¦Ì=-\frac{9}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬°ÑÏòÁ¿¹²Ïßת»¯Îª×ø±ê±íʾÊǽâ´ð¸ÃÌâµÄ¹Ø¼ü£¬ÊÇÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{3}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{6}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com