分析 (1)通过证明EH∥平面ABD,得出EH∥AB,从而证明AB∥平面EFGH;
(2)设EH=x,EF=y,由EH∥AB,EF∥CD,求出x、y的关系式,再求四边形EFGH的周长l的取值范围即可.
解答 解:(1)证明:∵四边形EFGH为平行四边形,∴EH∥FG;
∵EH?平面ABD,FG?平面ABD,
∴EH∥平面ABD;
又∵EH?平面ABC,平面ABC∩平面ABD=AB,
∴EH∥AB;
又∵EH?平面EFGH,AB?平面EFGH,
∴AB∥平面EFGH;
(2)设EH=x,EF=y,
∵EH∥AB,EF∥CD,
∴$\frac{EH}{AB}$=$\frac{CE}{CA}$,$\frac{EF}{CD}$=$\frac{AE}{AC}$,
∴$\frac{EH}{AB}$+$\frac{EF}{CD}$=$\frac{CE}{CA}$+$\frac{AE}{AC}$=$\frac{AC}{AC}$=1;
又∵AB=4,CD=6,∴$\frac{x}{4}$+$\frac{y}{6}$=1,
∴y=6(1-$\frac{x}{4}$),且0<x<4;
∴四边形EFGH的周长为
l=2(x+y)=2[x+6(1-$\frac{x}{4}$)]
=12-x,
∴8<12-x<12;
∴四边形EFGH周长的取值范围是(8,12).
点评 本题考查了空间中线面平行的判断与性质的应用问题,也考查了平行线截得线段成比例的应用问题,
是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在△ABC中,A<B是sinA<sinB的充要条件 | |
B. | $\overrightarrow{a}$$•\overrightarrow{b}$<0 是$\overrightarrow{a}$与$\overrightarrow{b}$夹角为钝角的充要条件 | |
C. | 若直线a,b,平面α,β满足a⊥α,α⊥β,b?α,b?β则a⊥b能推出b⊥β | |
D. | 在相关性检验中,当相关性系数r满足|r|>0.632时,才能求回归直线方程 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 甲地:总体均值为6,中位数为8 | B. | 乙地:总体均值为5,方差为12 | ||
C. | 丙地:中位数为5,众数为6 | D. | 丁地:总体均值为3,方差大于0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com