精英家教网 > 高中数学 > 题目详情

【题目】下面几种推理过程是演绎推理的是(  )

A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50

B. 由三角形的性质,推测空间四面体的性质

C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分

D. 在数列中,,可得,由此归纳出的通项公式

【答案】C

【解析】

推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.

解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;

B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;

C为三段论,是从一般→特殊的推理,是演绎推理;

D为不完全归纳推理,属于合情推理.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】大城市往往人口密集,城市绿化在健康人民群众肺方面发挥着非常重要的作用,历史留给我们城市里的大山拥有品种繁多的绿色植物更是无价之宝.改革开放以来,有的地方领导片面追求政绩,对森林资源野蛮开发受到严肃查处事件时有发生.2019年的春节后,广西某市林业管理部门在“绿水青山就是金山银山”理论的不断指引下,积极从外地引进甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:

(1)据茎叶图求甲、乙两种树苗的平均高度;

(2)据茎叶图,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等比数列,.

1)求的通项公式;

2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);

(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;

(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:

方案①:所有芒果以9元/千克收购;

方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.

通过计算确定种植园选择哪种方案获利更多.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,下列说法正确的是(

A.乙同学比甲同学发挥的稳定,且平均成绩也比甲同学高

B.乙同学比甲同学发挥的稳定,但平均成绩不如甲同学高

C.甲同学比乙同学发挥的稳定,且平均成绩也比乙同学高

D.甲同学比乙同学发挥的稳定,但平均成绩不如乙同学高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知时都取得极值.

)求的值;

)若,求的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.

(1)求抛物线C2的标准方程;

(2)过(10)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

同步练习册答案