精英家教网 > 高中数学 > 题目详情

【题目】如图,公园内有一块边长为的正三角形空地,拟改建成花园,并在其中建一直道方便花园管理. 分别在上,且均分三角形的面积.

1)设),,试将表示为的函数关系式;

2)若是灌溉水管,为节约成本,希望其最短,的位置应在哪里?若是参观路线,希望其最长,的位置应在哪里?

【答案】(1);(2)当取时,最短;当重合且中点,或重合且中点时,最长

【解析】

1)根据均分三角形的面积可得,即得,再由余弦定理可得表达式;(2)令,设,用定义讨论函数单调性,求得的最大值和最小值,再由(1)中得到的关系式,可得的最大值和最小值.

1均分三角形的面积,,即

中,由余弦定理得

因为,所以 解得

关于的函数关系式为.

2)由(1),令,则,且..

,则

所以上是减函数. 同理可得上是增函数.

于是当时,代入解得:,此时,且

时,代入解得:,此时上的中线.

故当取,且时,最短;

重合且中点,或重合且中点时,最长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1)求证:平面平面

2)若为棱的中点,求异面直线所成角的余弦值;

3)若二面角大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=8,a4=2,且满足an+2-2an+1an=0.

(1)求数列的通项公式;

(2)设Sn=|a1|+|a2|+…+|an|,求Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且FBE的中点,

求证:(1平面ABC

2平面EDB.

3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表数据为某地区某种农产品的年产量x(单位:)及对应销售价格y(单位:千元/)

x

1

2

3

4

5

y

70

65

55

38

22

1)若yx有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.

2)若该农产品每吨的成本为13.1千元,假设该农产品可全部卖出,利用上问所求的回归方程,预测当年产量为多少吨时,年利润Z最大?

(参考公式:回归直线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某养殖的水产品在临近收获时,工人随机从水中捕捞只,其质量分别在

(单位:克),经统计分布直方图如图所示.

(1)求这组数据的众数;

(2)现按分层抽样从质量为的水产品种随机抽取只,在从这只中随机抽取只,求这只水产品恰有只在内的概率;

(3)某经销商来收购水产品时,该养殖场现还有水产品共计约只要出售,经销商提出如下两种方案:

方案A:所有水产品以元/只收购;

方案B:对于质量低于克的水产品以元/只收购,不低于克的以元/只收购,

通过计算确定养殖场选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如右下表所示((吨)为买进蔬菜的质量,(天)为销售天数):

(Ⅰ) 根据右表提供的数据在网格中绘制散点图,并判断是否线性相关,若线性相关,用最小二乘法求出关于的线性回归方程

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(Ⅱ)根据(Ⅰ)中的计算结果,若该蔬菜商店准备一次性买进蔬菜25吨,则预计需要销售多少天.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

查看答案和解析>>

同步练习册答案