【题目】若定义在R上的函数对任意的、,都有成立,且当时,.
(1)求证:是R上的增函数;
(2)若,解不等式.
【答案】(1)证明见解析;(2)
【解析】
(1)要判断函数的增减性,就是在自变量范围中任意取两个x1<x2∈R,判断出f(x1)与f(x2)的大小即可知道增减性.
(2)已知f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,则f(4)=f(2)+f(2)﹣1f(2)=3.由不等式f(3m﹣2)<3,得f(3m﹣2)<f(2),由(1)知,f(x)是R上的增函数,得到3m﹣2<2,求出解集即可.
(1) 任取x1,x2∈R,且x1<x2,则x2﹣x1>0,f(x2﹣x1)>1,
∵f(x1+x2)=f(x1)+f(x2)﹣1,
∴f(x2)﹣f(x1)=f(x2﹣x1+ x1)﹣f(x1)
=f(x2﹣x1)+f(x1)﹣1﹣f(x1)=f(x2﹣x1)﹣1>0,
∴f(x1)<f(x2),
∴f(x)是R上的增函数.
(2)∵f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,
∴f(4)=f(2)+f(2)﹣1f(2)=3.
由不等式f(3m﹣2)<3,得f(3m﹣2)<f(2),
由(1)知,f(x)是R上的增函数,
∴3m﹣2<2,∴3m﹣4<0,∴﹣1<m,
∴不等式f(3m﹣2)<3的解集为(﹣1,).
因此,不等式的解集为
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l经过定点P(3,5),倾斜角为.
(1)写出直线l的参数方程和曲线C的标准方程.
(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=| ﹣lnx|+lnx,其中e为自然对数的底数.
(1)若a=﹣ ,求函数f(x)的单调区间;
(2)证明:当a∈(2,+∞)时,f′(x﹣1)>g(x)+a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α< ).
(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;
(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(1)求证:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)设H为线段AF上的点,且AH= HF,求直线BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD中,PA⊥BD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b,AC与BD交于点O,M为OC的中点.
(1)求证:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值为 ,求a:b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(Ⅰ)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中选2人,求恰好有1名女性的概率;
(Ⅲ)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?(结果保留三个有效数字)
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024/p> | 6.635 | 7.879 | 10.828 |
参考公式: ,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:
若将频率视为概率,回答下列问题:
(1)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(2)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数f(x)=2sinxcosx,x∈R的图象,只需将函数g(x)=2cos2x﹣1,x∈R的图象( )
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com