精英家教网 > 高中数学 > 题目详情
5.将函数y=f(x)cosx的图象向左平移$\frac{π}{4}$个单位后,得到函数y=2cos2x-1的图象,则f(x)=(  )
A.2sinxB.2cosxC.-2sinxD.-2cosx

分析 由题意可得将函数y=2cos2x-1=cos2x的图象向右平移$\frac{π}{4}$个单位后,得到函数y=f(x)cosx的图象,利用函数y=Asin(ωx+φ)的图象变换规律即可得解.

解答 解:由题意可得:将函数y=2cos2x-1=cos2x的图象向右平移$\frac{π}{4}$个单位后,得到函数y=f(x)cosx=cos2(x-$\frac{π}{4}$)=cos(2x-$\frac{π}{2}$)=sin2x=2sinxcosx的图象,
故解得:f(x)=2sinx.
故选:A.

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换的应用,诱导公式的应用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和抛物线C2:y2=2px(p>0)都经过点M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$),且椭圆C1的右焦点和抛物线C2的焦点F2相同.
(1)求C1,C2的方程;
(2)过F2作斜率为k的直线l和抛物线C2相交于A,B两点,直线l和椭圆C1相交于C,D两点,如图,当△CDF1的面积和△ABO的面积相等时,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域:
(1)y=-x2+2x+6
(2)y=$\sqrt{2{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x-$\frac{1}{x}$,若不等式t•f(2x)≥2x-1对x∈(0,1]恒成立,则t的取值范围为[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线y2=4x,A、B分别是抛物线上位于x轴上、下两侧的点,且A、B在抛物线准线上的射影点分别为C、D.$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O为坐标原点),则$\overrightarrow{OC}$•$\overrightarrow{OD}$=-17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知M是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1上的点,若F1,F2是椭圆的两个焦点,则|MF1|+|MF2|=(  )
A.6B.8C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC为非直角三角形,其内角A、B、C的对边分别为a、b、c,且有$\sqrt{3}$sin$\frac{C}{2}co{s}^{2}\frac{B}{2}-cos$$\frac{C}{2}$cos2$\frac{B}{2}-\frac{\sqrt{3}}{2}sin\frac{C}{2}+\frac{1}{2}cos\frac{C}{2}$=0.
(1)求角C;
(2)若c=3,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$经过一、三象限的渐近线为m,若圆${x^2}+{y^2}-2\sqrt{5}x-2\sqrt{5}y+6=0$上至少有三个不同的点到m的距离为1,则此双曲线的离心率e的取值范围为(  )
A.$[{\frac{{\sqrt{5}}}{2},2\sqrt{5}}]$B.$({1,\sqrt{5}}]$C.$[{\frac{{\sqrt{5}}}{2},\sqrt{5}}]$D.$[{\sqrt{5},2\sqrt{5}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$中,已知a=4,b=3,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{5}{3}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案