精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:(x﹣1)2+(y﹣2)2=4.
(1)求直线2x﹣y+4=0被圆C所截得的弦长;
(2)求过点M(3,1)的圆C的切线方程.

【答案】
(1)解:圆C:(x﹣1)2+(y﹣2)2=4的圆心为(1,2),半径长r=2,

圆心C(1,2)到直线2x﹣y+4=0的距离为:

所以直线2x﹣y+4=0被圆C所截得的弦长为:


(2)解:因为(3﹣1)2+(1﹣2)2=5>4,所以点M在圆外,

当切线斜率存在时,设切线方称为:y﹣1=k(x﹣3)

即kx﹣y﹣3k+1=0,

圆心C(1,2)到直线kx﹣y﹣3k+1=0的距离为:

由题意有: ,所以

此时切线方称为: ,即3x﹣4y﹣5=0,

当切线斜率不存在时,直线x=3也与圆相切.

综上所述,所求切线方称为:3x﹣4y﹣5=0或x=3


【解析】(1)求出圆心C(1,2)到直线2x﹣y+4=0的距离,即可求直线2x﹣y+4=0被圆C所截得的弦长;(2)分类讨论,利用圆心C(1,2)到直线kx﹣y﹣3k+1=0的距离等于r,即可求过点M(3,1)的圆C的切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}中,a2=1,则其前三项和S3的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2+4ax+3a2<0,其中a≠0,命题q:实数x满足
(1)若a=﹣1,且p∨q为真,求实数x的取值范围;
(2)若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论: ①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为(注:把你认为正确的结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数 的图象,只需将函数 的图象上所有的点的横坐标伸长为原来的倍(纵坐标不变),再向平行移动个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 . (Ⅰ)求f(x)的解析式;
(Ⅱ)当 ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理健康教育老师对某班50个学生进行了心里健康测评,测评成绩满分为100分.成绩出来后,老师对每个成绩段的人数进行了统计,并得到如图4所示的频率分布直方图.
(1)求a,并从频率分布直方图中求出成绩的众数和中位数;
(2)若老师从60分以下的人中选两个出来与之聊天,则这两人一个在(40,50]这一段,另一个在(50,60]这一段的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述: ①函数 是奇函数;
②函数 的一条对称轴方程为
③函数 ,则f(x)的值域为
④函数 有最小值,无最大值.
所有正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,其前n项和是Sn , 若S15>0,S16<0,则在 ,…, 中最大的是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案