精英家教网 > 高中数学 > 题目详情

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.
(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

【答案】
(1)解:如图,

a1=2,a2=4,

∴每年的费用是以2为首项,2为公差的等差数列,

∴an=a1+2(n﹣1)=2n


(2)解:设纯收入与年数n的关系为f(n),

则f(n)=21n﹣[2n+ ×2]﹣25=20n﹣n2﹣25,

由f(n)>0得n2﹣20n+25<0,

解得10﹣5 <n<10+5

因为n∈N,所以n=2,3,4,…18.

即从第2年该公司开始获利


(3)解:年平均收入为 =20﹣(n+ )≤20﹣2×5=10,

当且仅当n=5时,年平均收益最大.

所以这种设备使用5年,该公司的年平均获利最大


【解析】(1)由题意知,每年的费用是以2为首项,2为公差的等差数列,求得:an=a1+2(n﹣1)=2n.(2)设纯收入与年数n的关系为f(n),则f(n)=20n﹣n2﹣25,由此能求出引进这种设备后第2年该公司开始获利.(3)年平均收入为 =20﹣(n+ )≤20﹣2×5=10,由此能求出这种设备使用5年,该公司的年平均获利最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2﹣1|﹣2a+3,下列五个结论:
①当 时,函数f(x)没有零点;
②当 时,函数f(x)有两个零点;
③当 时,函数f(x)有四个零点;
④当a=2时,函数f(x)有三个零点;
⑤当a>2时,函数f(x)有两个零点.
其中正确的结论的序号是 . (填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)如图,已知抛物线,点A,抛物线上的点.过点B作直线AP的垂线,垂足为Q.

)求直线AP斜率的取值范围;

)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线是自然对数的底数)处的切线与圆在点处的切线平行.

(Ⅰ)证明:

(Ⅱ)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知角A,B,C所对的三条边分别是a,b,c,且
(1)求角B的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+ )( ﹣x)≥0的解集是(
A.{x|﹣ ≤x≤ }
B.{x|x≤﹣ 或x≥ }??
C.{x|x<﹣ 或x> }
D.{x|﹣ <x< }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx﹣2cos2x+1.
(1)求函数f(x)的最小正周期;
(2)将函数f(x)的图象向左平移 个单位,得到函数g(x)的图象.在△ABC中,角A,B,C的对边分别为a,b,c,若g( )=1,a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在多面体中, 均为边长为2的正方形, 为等腰直角三角形, ,且平面平面,平面平面.

(Ⅰ)求证:平面平面

(Ⅱ)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案