精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1) 解关于x的不等式

(2) 若函数的图像恒在函数图像的上方,求m的取值范围.

【答案】1(a1)∪(3a,+∞);(2(5).

【解析】

试题(1)本题是一个含参不等式的求解,需要按a1a>1a<1进行讨论;(2f(x)的图象恒在函数g(x)图象的上方,即为|x2|>|x3|m对任意实数x恒成立,分离参数为|x2||x3|>m恒成立.

所以对任意实数x恒有|x2||x3|≥|(x2)(x3)|5,于是得m<5.

试题解析:(1)不等式f(x)a1>0

|x2|a1>0

a1时,解集为x≠2,即(2)∪(2,+∞)

a>1时,解集为全体实数R

a<1时,∵|x2|>1a∴x2>1ax2<a1∴x>3ax<a1

故解集为(a1)∪(3a,+∞)

(2)f(x)的图象恒在函数g(x)图象的上方,即为|x2|>|x3|m对任意实数x恒成立,即|x2||x3|>m恒成立.

又对任意实数x恒有|x2||x3|≥|(x2)(x3)|5,于是得m<5

m的取值范围是(5)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。

(1)求椭圆的方程;

(2)是椭圆上的两个不同点,若直线的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an} 满足a1=a,=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.

(1)求数列{an} 的通项公式;

(2)设a=,c=,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是

1)求椭圆的方程;

2)已知点,问是否存在直线与椭圆交于两点,且,若存在,求出直线斜率的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点与点的距离之比为2,记动点的轨迹为曲线C.

(1)求曲线C的方程;

(2)过点作曲线C的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是( ).

①“若,则,中至少有一个不小于2”的逆命题是真命题;

②命题“设,若,则”是一个真命题;

③命题,,则的必要不充分条件;

④命题“,使得”的否定是:“,均有”.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC-A1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为14,侧面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°

1)平面A1C1B∩平面ABC=l,证明:A1C1l

2)求四棱锥B-A1ACC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆在左、右焦点分别为,上顶点为点,若是面积为的等边三角形.

1)求椭圆的标准方程;

2)已知是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).

查看答案和解析>>

同步练习册答案