精英家教网 > 高中数学 > 题目详情

【题目】如图,四楼锥中,平面平面,底面为梯形. ,且均为正三角形. 的中点重心, 相交于点.

(1)求证: 平面

(2)求三棱锥的体积.

【答案】(1)见解析(2)

【解析】试题分析:(1)第(1)问,连,连接.证明// ,即证平面. (2)第(2)问,主要是利用体积变换, ,求得三棱锥的体积.

试题解析:

(1)方法一:连,连接.

由梯形 ,知

的中点, 的重心,∴

中, ,故// .

平面, 平面,∴ 平面.

方法二:过交PD于N,过F作FM||AD交CD于M,连接MN,

G为△PAD的重心,

又ABCD为梯形,AB||CD,

又由所作GN||AD,FM||AD,得// ,所以GNMF为平行四边形.

因为GF||MN,

(2) 方法一:由平面平面均为正三角形, 的中点

,得平面,且

由(1)知//平面,∴

又由梯形ABCD,AB||CD,且,知

为正三角形,得,∴

∴三棱锥的体积为.

方法二: 由平面平面均为正三角形, 的中点

,得平面,且

,∴

而又为正三角形,得,得.

∴三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ2.

(1)若以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C的直角坐标方程;

(2)P(xy)是曲线C上的一个动点,求3x4y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:①若,则;②的图象关于点对称;③函数上单调递增;④的图象向右平移个单位长度后所得图象关于轴对称.其中所有正确结论的编号是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()

A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近年的宣传费,和年销售量的数据作了初步处理,得到下面的散点图及一些统计量的值,表中

(Ⅰ)根据散点图判断,,哪一个宜作为年销售量关于年宣传费的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;

(Ⅲ)已知这种产品的年利润的关系为,根据(Ⅱ)的结果回答下列问题:

(1)当年宣传费时,年销售量及年利润的预报值时多少?

(2)当年宣传费为何值时,年利润的预报值最大?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线与轴交于点,过点作圆的两条切线,切点为,且.

(1)求抛物线的方程;

(2)若直线是过定点的一条直线,且与抛物线交于两点,过定点的垂线与抛物线交于两点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】庙会是我国古老的传统民俗文化活动,又称“庙市”或 “节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:

甲说:“我或乙能中奖”; 乙说:“丁能中奖”;

丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.

游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里0.2元/分钟”.刚在重庆参加工作的小刘拟租用“共享吉利博瑞车”上下班,同单位的邻居老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔开车上下班总共也需花费大约1小时”,并将自己近50天的往返开车的花费时间情况统计如表:

将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.

(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);

(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有天为“最优选择”,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调递减区间;

(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;

(Ⅲ)若数列满足 ,记的前项和为,求证: .

【答案】I;(II;(III证明见解析.

【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.

试题解析:)由,得.所以

,解得(舍去),所以函数的单调递减区间为 .

)由得,

时,因为,所以显然不成立,因此.

,则,令,得.

时, ,所以,即有.

因此时, 上恒成立.

时, 上为减函数,在上为增函数,

,不满足题意.

综上,不等式上恒成立时,实数的取值范围是.

III)证明:由知数列的等差数列,所以

所以

由()得, 上恒成立.

所以. 将以上各式左右两边分别相加,得

.因为

所以

所以.

型】解答
【/span>束】
22

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

查看答案和解析>>

同步练习册答案