£¨2013•Ðì»ãÇøһģ£©¶ÔÓÚÊýÁÐ{xn}£¬´ÓÖÐÑ¡È¡Èô¸ÉÏ²»¸Ä±äËüÃÇÔÚÔ­À´ÊýÁÐÖеÄÏȺó´ÎÐò£¬µÃµ½µÄÊýÁгÆΪÊÇÔ­À´ÊýÁеÄÒ»¸ö×ÓÊýÁУ®Ä³Í¬Ñ§ÔÚѧϰÁËÕâÒ»¸ö¸ÅÄîÖ®ºó£¬´òËãÑо¿Ê×ÏîΪÕýÕûÊýa£¬¹«±ÈΪÕýÕûÊýq£¨q£¾0£©µÄÎÞÇîµÈ±ÈÊýÁÐ{an}µÄ×ÓÊýÁÐÎÊÌ⣮Ϊ´Ë£¬ËûÈÎÈ¡ÁËÆäÖÐÈýÏîak£¬am£¬an£¨k£¼m£¼n£©£®
£¨1£©Èôak£¬am£¬an£¨k£¼m£¼n£©³ÉµÈ±ÈÊýÁУ¬Çók£¬m£¬nÖ®¼äÂú×ãµÄµÈÁ¿¹Øϵ£»
£¨2£©Ëû²ÂÏ룺¡°ÔÚÉÏÊöÊýÁÐ{an}ÖдæÔÚÒ»¸ö×ÓÊýÁÐ{bn}ÊǵȲîÊýÁС±£¬Îª´Ë£¬ËûÑо¿ÁËak+anÓë2amµÄ´óС¹Øϵ£¬ÇëÄã¸ù¾Ý¸ÃͬѧµÄÑо¿½á¹ûÀ´ÅжÏÉÏÊö²ÂÏëÊÇ·ñÕýÈ·£»
£¨3£©ËûÓÖÏ룺ÔÚÊ×ÏîΪÕýÕûÊýa£¬¹«²îΪÕýÕûÊýdµÄÎÞÇîµÈ²îÊýÁÐÖÐÊÇ·ñ´æÔڳɵȱÈÊýÁеÄ×ÓÊýÁУ¿ÇëÄã¾Í´ËÎÊÌâд³öÒ»¸öÕýÈ·ÃüÌ⣬²¢¼ÓÒÔÖ¤Ã÷£®
·ÖÎö£º£¨1£©ÒÀÌâÒ⣬ÓÉam2=ak•an£¬¼´¿ÉÇóµÃk£¬m£¬nÖ®¼äÂú×ãµÄµÈÁ¿¹Øϵ£»
£¨2£©ÀûÓÃ×÷²î·¨Åжϣ¨ak+an£©-2amµÄ½á¹ûÊÇ·ñΪ0¼´¿ÉÅжÏÉÏÊö²ÂÏëÊÇ·ñÕýÈ·£»
£¨3£©ÃüÌ⣺¶ÔÓÚÊ×ÏîΪÕýÕûÊýa£¬¹«²îΪÕýÕûÊýdµÄÎÞÇîµÈ²îÊýÁÐ{an}£¬×Ü¿ÉÒÔÕÒµ½Ò»¸öÎÞÇî×ÓÊýÁÐ{bn}£¬Ê¹µÃ{bn}ÊÇÒ»¸öµÈ±ÈÊýÁУ¬´ËÃüÌâÊÇÕæÃüÌ⣬£»
Ö¤·¨Ò»£ºÀûÓöþÏîʽ¶¨Àí£¨1+d£©n=£¨1+
C
1
n
d+
C
2
n
d2+¡­+
C
n
n
dn£©£¬¼´¿ÉÖ¤Ã÷a£¨Md+1£©=a+aMdÊÇ{an}ÖеĵÚaM+1ÏM=
C
1
n
+
C
2
n
d+¡­+
C
n
n
dn-1ΪÕýÕûÊý£©£»
Ö¤·¨¶þ£ºÏȲÂÏ룬ÔÙÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£ºak=aqk-1£¬am=aqm-1£¬an=aqn-1£¬¡­£¨1·Ö£©
Ôòam2=ak•an£¬¼´ÓУ¨aqm-1£©2=£¨aqk-1£©£¨aqn-1£©£¬¡­£®£¨3·Ö£©
2£¨m-1£©=£¨k-1£©+£¨n-1£©£¬»¯¼ò¿ÉµÃ£®2m=k+n£®¡­..£¨4·Ö£©
£¨2£©ak+an=aqk-1+aqn-1£¬ÓÖ2am=2aqm-1£¬
¹Ê £¨ak+an£©-2am=aqk-1+aqn-1-2aqm-1=aqk-1£¨1+qn-k-2qm-k£©£¬¡­..£¨6·Ö£©
ÓÉÓÚk£¬m£¬nÊÇÕýÕûÊý£¬ÇÒn£¾m£¬Ôòn¡Ým+1£¬n-k¡Ým-k+1£¬
ÓÖqÊÇÂú×ãq£¾1µÄÕýÕûÊý£¬Ôòq¡Ý2£¬
1+qn-k-2qm-k¡Ý1+qm-k+1-2qm-k=1+q•qm-k-2qm-k¡Ý1+2qm-k-2qm-k=1£¾0£¬
ËùÒÔ£¬ak+an£¾2am£¬´Ó¶øÉÏÊö²ÂÏë²»³ÉÁ¢£®¡­..£¨10·Ö£©
£¨3£©ÃüÌ⣺¶ÔÓÚÊ×ÏîΪÕýÕûÊýa£¬¹«²îΪÕýÕûÊýdµÄÎÞÇîµÈ²îÊýÁÐ{an}£¬×Ü¿ÉÒÔÕÒµ½Ò»¸öÎÞÇî×ÓÊýÁÐ{bn}£¬Ê¹µÃ{bn}ÊÇÒ»¸öµÈ±ÈÊýÁУ®¡­£¨13·Ö£©
´ËÃüÌâÊÇÕæÃüÌ⣬ÏÂÃæÎÒÃǸø³öÖ¤Ã÷£®
Ö¤·¨Ò»£ºÖ»ÒªÖ¤Ã÷¶ÔÈÎÒâÕýÕûÊýn£¬bn=a£¨1+d£©n£¬n¡Ý1¶¼ÔÚÊýÁÐ{an}ÖУ®ÒòΪbn=a£¨1+d£©n=a£¨1+
C
1
n
d+
C
2
n
d2+¡­+
C
n
n
dn£©=a£¨Md+1£©£¬
͉˕M=
C
1
n
+
C
2
n
d+¡­+
C
n
n
dn-1ΪÕýÕûÊý£¬ËùÒÔa£¨Md+1£©=a+aMdÊÇ{an}ÖеĵÚaM+1Ï֤±Ï£®¡­..£¨18·Ö£©
Ö¤·¨¶þ£ºÊ×ÏîΪa£¬¹«²îΪd£¨ a£¬d¡ÊN*£©µÄµÈ²îÊýÁÐΪa£¬a+d£¬a+2d£¬¡­£¬¿¼ÂÇÊýÁÐ{an}ÖеÄÏ
a+ad£¬a+£¨2a+ad£©d£¬a+£¨3a+3ad+d2£©d£¬¡­
ÒÀ´ÎÈ¡ÊýÁÐ{bn}ÖÐÏîb1=a+ad=a£¨1+d£©£¬b2=a+£¨2a+ad£©d=a£¨1+d£©2£¬b3=a+£¨3a+3ad+d2£©d=a£¨1+d£©3£¬ÔòÓÉa£¼2a+ad£¼3a+3ad+d2£¬¿ÉÖª
b2
b1
=
b3
b2
£¬
²¢ÓÉÊýѧ¹éÄÉ·¨¿ÉÖª£¬ÊýÁÐbn=a£¨1+d£©n£¬n¡Ý1ΪÁÐ{an}µÄÎÞÇîµÈ±È×ÓÊýÁС­£¨18·Ö£©
µãÆÀ£º±¾Ì⿼²éµÈ²îÓëµÈ±È¹ØϵµÄÈ·¶¨£¬¿¼²éÊýѧ¹éÄÉ·¨Óë·ÖÎö·¨Ö¤Ã÷ÎÊÌâµÄÄÜÁ¦£¬¿¼²é¿¼²é´´ÐÂ˼άÓëÂß¼­Ë¼Î¬ÄÜÁ¦¼°×ÛºÏÔËËãµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ðì»ãÇøһģ£©ÔÚ¡÷ABCÖУ¬¡ÏA=60¡ã£¬MÊÇABµÄÖе㣬Èô|AB|=2£¬|BC|=2
3
£¬DÔÚÏ߶ÎACÉÏÔ˶¯£¬Ôò
DB
DM
µÄ×îСֵΪ
23
16
23
16
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ðì»ãÇøһģ£©²»µÈʽ
.
2x+1    20
0             2x1
3             2-1
.
¡Ý0µÄ½âΪ
x¡Ü0
x¡Ü0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ðì»ãÇøһģ£©º¯Êýf(x)=
ax2-1
x
ÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÄÇôʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ðì»ãÇøһģ£©·½³Ì×é
2x-y=1
x+3y=-2
µÄÔö¹ã¾ØÕóÊÇ
2-1   1
1  3  -2
2-1   1
1  3  -2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ðì»ãÇøһģ£©ÒÑÖªÃݺ¯Êýf£¨x£©µÄͼÏó¹ýµã£¨8£¬
1
2
£©£¬Ôò´ËÃݺ¯ÊýµÄ½âÎöʽÊÇf£¨x£©=
x-
1
3
x-
1
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸