【题目】设 为实数,且,
(I)求方程的解;
(II)若满足,求证:①②;
(III)在(2)的条件下,求证:由关系式所得到的关于的方程存在,使
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线与轴交于,两点,点的坐标为,当变化时,解答下列问题:
()能否出现的情况?说明理由.
()证明过,,三点的圆在轴上截得的弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(1)求数列{an}的通项公式;
(2)设a1>0,λ=100,当n为何值时,数列 的前n项和最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且S2=11,S5=50,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量的坐标可以是( )
A.(﹣1,﹣3)
B.(1,﹣3)
C.(1,1)
D.(1,﹣1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天 | 1 | 2 | 6 |
市场价y元 | 5 | 2 | 10 |
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com