精英家教网 > 高中数学 > 题目详情
已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.
【答案】分析:(1)直接把给出的点的坐标代入椭圆方程,结合离心率及隐含条件a2=b2+c2联立方程组求解a2,b2的值,则椭圆方程可求;
(2)设出A,B的坐标,根据新定义得到P,Q的坐标,当斜率存在时设出直线方程y=kx+m,联立直线和椭圆方程后利用根与系数关系求得x1+x2,x1x2,再由以PQ为直径的圆过原点得到A,B的坐标之间的关系3x1x2+4y1y2=0,转化为横坐标的关系后代入x1+x2,x1x2,即可把直线的斜率用截距表示,然后利用弦长公式求出AB的长度,用点到直线的距离公式求出O点到AB的距离,利用整体运算就能求得三角形OAB的面积,斜率不存在时直线方程可直接设为x=m,和椭圆方程联立求出y2,同样代入3x1x2+4y1y2=0后可直接求出m的值,则三角形面积可求.
解答:解:(1)由已知得:,即
 解得a2=4,b2=3,所以椭圆方程为
(2)设A(x1,y1),B(x2,y2),则
1°当直线l的斜率存在时,设方程为y=kx+m
 联立得:(3+4k2)x2+8kmx+4(m2-3)=0.
则有△=(8km)2-4(3+4k2)×4(m2-3)=48(3+4k2-m2)>0

由以PQ为直径的圆经过坐标原点O可得:
,即3x1x2+4y1y2=0•
把y1=kx1+m,y2=kx2+m代入整理得:
  ②
将①式代入②式得:3+4k2=2m2
∵3+4k2>0,∴m2>0,
则△=48m2>0.
又点O到直线y=kx+m的距离
==

所以
2°当直线l的斜率不存在时,设方程为x=m(-2<m<2)
联立椭圆方程得:
代入3x1x2+4y1y2=0得到,即,y=

综上:△OAB的面积是定值
,所以二者相等.
点评:本题考查了椭圆的标准方程,考查了直线和圆锥曲线的综合,考查了弦长公式的用法,训练了直线和圆锥曲线关系中的设而不求的解题方法,体现了整体运算思想,训练了学生的计算能力,该题是有一定难度问题.
练习册系列答案
相关习题

科目:高中数学 来源:2014届四川省高二5月月考考理科数学试卷(解析版) 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:

(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三12月月考数学理卷 题型:解答题

已知椭圆过点,离心率

(1)求椭圆C的方程;

(2)若过点的直线与椭圆C交于两点,且以为直径的圆过原点,试求直线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二第二次月考数学试卷 题型:解答题

(文科做)(本小题满分16分)

已知椭圆过点,离心率为,圆的圆心为坐标原点,直径为椭圆的短轴,圆的方程为.过圆上任一点作圆的切线,切点为

(1)求椭圆的方程;

(2)若直线与圆的另一交点为,当弦最大时,求直线的直线方程;

(3)求的最值.

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省毫州市高二上学期质量检测理科数学 题型:解答题

如图,已知椭圆过点.,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

(I)求椭圆的标准方程;

(II)设直线的斜线分别为.      证明:

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分15分)

如图,已知椭圆过点,离心率为,左、右焦点分别为。点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

       (I)求椭圆的标准方程;

       (II)设直线的斜线分别为.

              (i)证明:

              (ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案