精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow a$=(0,2,1),$\overrightarrow b$=(1,-1,2 )的夹角为(  )
A.B.45°C.90°D.180°

分析 根据向量$\overrightarrow{a}$•$\overrightarrow{b}$=0,得出$\overrightarrow{a}$⊥$\overrightarrow{b}$,夹角为90°.

解答 解:∵向量$\overrightarrow a$=(0,2,1),$\overrightarrow b$=(1,-1,2 )
∴$\overrightarrow{a}$•$\overrightarrow{b}$=0×1+2×(-1)+1×2=0,
∴$\overrightarrow{a}$⊥$\overrightarrow{b}$,
即$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为90°.
故选:C.

点评 本题考查了空间向量的数量积与垂直的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在区间(0,1)内任取两个数x,y,则满足y≥2x概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式-x2+4x+5<0的解集是(  )
A.{x|x>5或x<-1}B.{x|x≥5或x≤-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,分别取与 x 轴,y 轴方向相同的两个单位向量作$\overrightarrow{i},\overrightarrow{j}$为基底,若向量,$\overrightarrow{a}=cos\frac{π}{3}\overrightarrow{i}+sin\frac{π}{3}\overrightarrow{j}$,$\overrightarrow{b}=cos\frac{2π}{3}\overrightarrow{i}+sin\frac{2π}{3}\overrightarrow{j}$,则|$\overrightarrow{a}-\overrightarrow{b}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z的共轭复数为$\overline z$,且$\overline z=\frac{2}{1+i}$,则|z|等于(  )
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在长方体体ABCD-A1B1C1D1中,O为AC的中点.
(1)化简:$\overrightarrow{{A}_{1}O}$-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$;
(2)设E是棱DD1上的点,且$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{D{D}_{1}}$,若$\overrightarrow{EO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,试求实数x,y,z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设向量$\overrightarrow{a}$=(2cosx,1),向量$\overrightarrow{b}$=($\sqrt{3}$cosx,sin2x-$\sqrt{3}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的最小正周期;
(2)已知△ABC的三内角A,B,C的对边分别为a,b,c,若a=2$\sqrt{3}$,b=3$\sqrt{2}$,f(A)=1,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设Sn是数列{an}(n∈N*)的前n项和,a1=1,且Sn2=n2an+Sn-12,an≠0,n≥2,n∈N*
(1)证明:an+2-an=2(n∈N*);
(2)若an=log3bn,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若圆x2+y2+2x+2y+1=0的面积被直线ax+by+1=0(a>0,b>0)平分.则ab的最大值是(  )
A.$\frac{1}{16}$B.$\frac{1}{4}$C.4D.16

查看答案和解析>>

同步练习册答案