精英家教网 > 高中数学 > 题目详情

【题目】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )

A.
B.
C.
D.

【答案】C
【解析】解:由三视图可知:该几何体是一个如图所示的三棱锥(图中红色部分),它是一个正四棱锥的一半,
其中底面是一个两直角边都为6的直角三角形,高EF=4.
设其外接球的球心为O,O点必在高线EF上,外接球半径为R,
则在直角三角形AOF中,AO2=OF2+AF2=(EF﹣EO)2+AF2
即R2=(4﹣R)2+(3 2
解得:R=
故选C.

由三视图可知:该几何体是一个如图所示的三棱锥(图中红色部分),它是一个正四棱锥的一半,其中底面是一个两直角边都为6的直角三角形,高为4.设其外接球的球心O必在高线EF上,利用外接球的半径建立方程,据此方程可求出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的离心率为 ,若圆x2+y2=a2被直线x﹣y﹣=0截得的弦长为2

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得 为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆M:的左顶点为中心为若椭圆M过点,且

1)求椭圆M的方程;

2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;

3)过点作两条斜率分别为的直线交椭圆M两点,且,求证:直线恒过一个定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,中点,上的一点,.

(1)若平面,求证:.

(2)平面将棱柱分割为两个几何体,记上面一个几何体的体积为,下面一个几何体的体积为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,左、右顶点分别为,上、下顶点分别为,四边形与四边形的面积之和为4.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,其中为坐标原点,求直线被以线段为直径的圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2n2+n,n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足an=4log2bn+3,n∈N* , 求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:

喜欢看足球比赛

不喜欢看足球比赛

总计

总计


(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2= ,其中n=a+b+c+d
参考数据:

P(K2≥k0

0.4

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,

(1)求该椭圆的离心率;(2)设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

查看答案和解析>>

同步练习册答案