精英家教网 > 高中数学 > 题目详情
5.如图所示,O是坐标原点,三个正方形OABC、BDEF、EGHI的顶点中,O、A、C、D、F、G、I七个点都在抛物线y2=2px(p>0)上,另外,B、E、H三个点都在x轴上,则这三个正方形的面积之比(  )
A.1:2:3B.1:4:9C.2:3:4D.4:9:16

分析 求出|OB|=4p,|BE|=8p,|EH|=16p,可得这三个正方形的面积之比

解答 解:直线OC的方程为y=x,与抛物线方程联立可得C(2p,2p),
∴B(4p,0)
直线BF的方程为y=x-4p,与抛物线方程联立可得F(8p,4p),
∴E(12p,0),
同理H(28p,0)
∴|OB|=4p,|BE|=8p,|EH|=16p,
∴这三个正方形的面积之比1:4:9,
故选B.

点评 本题考查直线与抛物线的位置关系,考查正方形面积之比,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(x2+tx+2)(t为常数,且-2$\sqrt{2}$<t<2$\sqrt{2}$).
(1)当x∈[0,2]时,求函数f(x)的最小值(用t表示);
(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α为△ABC的内角,且tanα=-$\frac{3}{4}$,计算:
(1)$\frac{sinα+cosα}{sinα-cosα}$;
(2)sin($\frac{π}{2}$+α)-cos($\frac{π}{2}$-α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线N:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,其中b>a>0,双曲线M和双曲线N交于A,B,C,D四个点,且四边形ABCD的面积为4c2,则双曲线M的离心率为(  )
A.$\frac{\sqrt{5}+3}{2}$B.$\sqrt{5}$+3C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,且a(sinA-sinB)+bsinB=csinC.
(Ⅰ)求角c的值
(Ⅱ)若2cos2$\frac{A}{2}$-2sin2$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$,且A<B,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设l,m,n是三条不同的直线,α,β是两个不同的平面,下列命题中正确的是(  )
A.若l?β且m∥β,则l∥mB.若l⊥m且l⊥n,则m∥n
C.若m⊥n且m?α,n?β,则l∥αD.若m⊥α且m∥n,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线$\frac{1}{4}$y=x2的焦点坐标为(  )
A.(1,0)B.(2,0)C.(0,$\frac{1}{8}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+1$,
(1)求函数f(x)的极值;
(2)若对?x∈[-2,3],都有s≥f(x)恒成立,求出s的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,则(cosθ+1)(sinθ+1)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案