精英家教网 > 高中数学 > 题目详情
若sinθ=
3
3
,求
cos(π-θ)
cosθ[sin(
3
2
π-θ)-1]
+
cos(2π-θ)
cos(π+θ)sin(
π
2
+θ)-sin(
2
+θ)
的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式利用诱导公式化简,整理后通分并利用同角三角函数间基本关系化简,将sinθ的值代入计算即可求出值.
解答: 解:∵sinθ=
3
3

∴原式=
-cosθ
cosθ(-cosθ-1)
+
cosθ
-cosθcosθ+cosθ
=
1
1+cosθ
+
1
1-cosθ
=
1-cosθ+1+cosθ
1-cos2θ
=
2
sin2θ
=
2
1
3
=6.
点评:此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

小李练习射击,每次击中目标的概率为
1
3
,用ξ表示小李射击5次击中目标的次数,则ξ的均值Eξ与方差Dξ的值分别是(  )
A、
5
3
9
10
B、
5
3
5
3
C、
5
3
10
9
D、
5
3
2
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)解不等式:
2-x
4+x
>0;
(Ⅱ)解关于x的不等式:x2-(a+1)x+a≥0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

求由抛物线y2=4x与直线y=x-3所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足|z|=1,且z2+2z+
1
z
<0.求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A、B、C的对边,
m
=(b,2a-c),
n
=(cosC,-cosB),且
m
n

(1)求角B的大小;
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
 (t为参数),直线l与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,且满足:(2b-c)•cosA-acosC=0.
(1)求角A的大小;
(2)若a=
7
,S△ABC=
3
3
2
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若“sin2x<
1
2
”是一个假命题,则变量x的取值范围是
 

查看答案和解析>>

同步练习册答案