【题目】已知定点、,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)已知定点,,过点的直线与曲线交于、两点 ,则直线与斜率之积是否为定值,若是求出定值;若不是请说明理由.
科目:高中数学 来源: 题型:
【题目】在创国家级卫生县城的评估标准中,有一项是市民对该项政策的知晓率,专家在对某县进行评估时,从该县的乡镇中随机抽取市民进行调查.知晓率达90%以上记为合格,否则记为不合格.已知该县的10个乡镇中,有7个乡镇市民的知晓率可达90%以上,其余的均在90%以下.
(1)现从这10个乡镇中随机抽取3个进行调查,求抽到的乡镇中恰有2个乡镇不合格的概率;
(2)若记从该县随机抽取的3个乡镇中不合格的乡镇的个数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:
送餐单数 | 38 | 39 | 40 | 41 | 42 |
甲公司天数 | 10 | 10 | 15 | 10 | 5 |
乙公司天数 | 10 | 15 | 10 | 10 | 5 |
(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;
(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:
①求乙公司送餐员日工资的分布列和数学期望;
②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.
(1)若数列为“数列”,求数列的前项和;
(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强学生法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50人,统计他们的竞赛成绩,并得到如表所示的频数分布表.
分数段 | |||||
人数 | 5 | 15 | 15 | 12 |
(Ⅰ)求频数分布表中的的值,并估计这50名学生竞赛成绩的中位数(精确到0.1);
(Ⅱ)将成绩在内定义为“合格”,成绩在内定义为“不合格”.请将列联表补充完整.
合格 | 不合格 | 合计 | |
高一新生 | 12 | ||
非高一新生 | 6 | ||
合计 |
试问:是否有95%的把握认为“法律知识的掌握合格情况”与“是否是高一新生”有关?说明你的理由;
(Ⅲ)在(Ⅱ)的前提下,在该50人中,按“合格与否”进行分层抽样,随机抽取5人,再从这5人中随机抽取2人,求恰好2人都合格的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com