精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数 .

(1)若,写出函数的单调增区间和减区间;

2)若,求函数的最大值和最小值;

(3)若函数在上是单调函数,求实数的取值范围.

【答案】(1)单调递增区间为,单调递减区间为.(2)当时, ,当时, .(3).

【解析】试题分析:(1)根据二次函数对称轴确定函数单调区间(2)根据对称轴与定义区间位置关系确定函数最值取法(3)由题意对称轴不在区间(-4,6)内,得解不等式得实数的取值范围.

试题解析:(1)当时,

又因为抛物线开口向上,所以它的单调递增区间为,单调递减区间为.

(2)当时,

图像开口向上,所以当时, ,当时, .

3若函数在上是单调函数,则由得知它的对称轴为,若它在上单调,则 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公元年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )

(参考数据:

A. 2.598,3,3.1048 B. 2.598,3,3.1056

C. 2.578,3,3.1069 D. 2.588,3,3.1108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,=2.71828……是自然对数的底数),曲线在点处的切线与轴平行.

1)求的值;

2)求的单调区间;

3)设,其中的导函数.证明:对任意>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

(1)讨论函数单调性;

(2)时,成立,求实数取值范围

(3)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)当时,求函数的最小值;

(3)若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x2﹣4ax+a2﹣2a+2在区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】否定“自然数中恰有一个偶数”时正确的反设为( )

A. 都是奇数 B. 至少有两个偶数

C. 都是偶数 D. 中都是奇数或至少有两个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以原点为圆心的两个同心圆,其中,大圆的半径为 ,小圆的半径为,点为大圆上一动点,连接,与小圆交于点,过点轴的垂线,垂足为,过点作直线的垂线,垂足为,点,记.

(1)求点的坐标(用含有的式子表示),并写出点的轨迹方程,指出点的轨迹是什么曲线;

(2)设点的轨迹为,点分别是曲线上的两个动点,且,求的值.

查看答案和解析>>

同步练习册答案