【题目】已知二次函数, .
(1)若,写出函数的单调增区间和减区间;
(2)若,求函数的最大值和最小值;
(3)若函数在上是单调函数,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】公元年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )
(参考数据: )
A. 2.598,3,3.1048 B. 2.598,3,3.1056
C. 2.578,3,3.1069 D. 2.588,3,3.1108
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数,=2.71828……是自然对数的底数),曲线在点处的切线与轴平行.
(1)求的值;
(2)求的单调区间;
(3)设,其中是的导函数.证明:对任意>0,<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求证:平面EBC⊥平面EBD;
(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】否定“自然数、、中恰有一个偶数”时正确的反设为( )
A. 、、都是奇数 B. 、、至少有两个偶数
C. 、、都是偶数 D. 、、中都是奇数或至少有两个偶数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,以原点为圆心的两个同心圆,其中,大圆的半径为 ,小圆的半径为,点为大圆上一动点,连接,与小圆交于点,过点作轴的垂线,垂足为,过点作直线的垂线,垂足为,点,记.
(1)求点的坐标(用含有的式子表示),并写出点的轨迹方程,指出点的轨迹是什么曲线;
(2)设点的轨迹为,点分别是曲线上的两个动点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com