精英家教网 > 高中数学 > 题目详情
14.已知$\frac{1+tanα}{1-tanα}=\frac{4}{3}$,则$tan(α+\frac{π}{4})$=$\frac{4}{3}$,tanα=$\frac{1}{7}$.

分析 由条件利用两角和的正切公式,求得$tan(α+\frac{π}{4})$以及tanα的值.

解答 解:∵$\frac{1+tanα}{1-tanα}=\frac{4}{3}$=$tan(α+\frac{π}{4})$,∴$tan(α+\frac{π}{4})$=$\frac{4}{3}$.
再根据$\frac{1+tanα}{1-tanα}=\frac{4}{3}$,求得tanα=$\frac{1}{7}$,
故答案为:$\frac{4}{3}$; $\frac{1}{7}$.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.根据对数函数的图象和性质填空.
(1)已知函数y=log2x,则当x>0时,y∈(-∞,+∞),当x>1时,y∈(0,+∞).当0<x<1时,y∈(-∞,0);当x>4时,y∈(2,+∞).
(2)已知函数y=log${\;}_{\frac{1}{3}}$x,则当0<x<1时,y∈(0,+∞),当x>1时,y∈(-∞,0).当x>5时,y∈(-∞,log${\;}_{\frac{1}{3}}$5);当0<x<2时,y∈(log${\;}_{\frac{1}{3}}$2,+∞);当y>2时,x∈(0,$\frac{1}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)={log_2}(a-{2^x})+x-2$,当$x∈[0,\frac{1}{2}]$时,f(x)≤0恒成立,则实数a的取值范围是(  )
A.(-∞,4]B.$(\sqrt{2},4]$C.$(-∞,3\sqrt{2}]$D.$(\sqrt{2},3\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.
(1)当α=36°时,求β的度数;
(2)猜想α与β之间的关系,并给予证明.
(3)若点C平分优弧AB,且BC2=3OA2,试求α的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若0<3a=4b<1,则a,b的大小关系是a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.-1∈NB.$\sqrt{2}$∈QC.π∉RD.∅⊆Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)的定义域为(0,4),函数g(x)=$\frac{{f({x+1})}}{{\sqrt{x-1}}}$的定义域为集合A,集合B={x|a<x<2a-1},若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命题p:an=f(n)是递增数列,命题q:g(x)在(a,π)上有且仅有2条对称轴.
①求g(x)的周期和单调递增区间;
②若p∧q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知各顶点都在同一个球面上的正四棱锥高为3,底面边长为$\sqrt{6}$,则这个球的表面积是16π.

查看答案和解析>>

同步练习册答案