精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=loga|x+1|在区间(﹣2,﹣1)上恒有f(x)>0,则关于a的不等式f(4a﹣1)>f(1)的解集为

【答案】(0,
【解析】解:因为函数f(x))=loga|x+1|在区间(﹣2,﹣1)上恒有f(x)>0,所以0<a<1,且该函数在区间(﹣∞,﹣1)上为增函数,在(﹣1,+∞)上为减函数,
又f(4a﹣1)>f(1),且4a﹣1>﹣1,
所以4a﹣1<1,解得0<a<
所以关于a的不等式f(4a﹣1)>f(1)的解集为(0, ),
所以答案是:(0, ).
【考点精析】本题主要考查了函数单调性的判断方法和函数单调性的性质的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设S表示所有大于﹣1的实数构成的集合,确定所有的函数:S→S,满足以下两个条件:
对于S内的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);在区间﹣1<x<0与x>0的每一个内, 是严格递增的.求满足上述条件的函数的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等比数列,a1=2,a3=18.数列{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{an},{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n2 , Qn=b10+b12+b14+…+b2n+8 , 其中n=1,2,3,….试比较Pn与Qn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形中, 是边的中点,如图(1),将沿直线翻折到的位置,使,如图(2).

(Ⅰ)求证:平面平面

(Ⅱ)已知 分别是线段 上的点,且 平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)是定义在(﹣3,3)上的奇函数,当0<x<3时,函数f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是(

A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C是△ABC的三个内角.
(1)3cos(B﹣C)﹣1=6cosBcosC,求cosA的值;
(2)若sin(A+ )=2cosA,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn , 且Sn=2n2+3n;
(1)求它的通项an
(2)若bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E为CC1的中点,那么异面直线OE与AD1所成角的余弦值等于(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是抛物线y2=8x上的一个动点,Q是圆(x﹣3)2+(y﹣1)2=1上的一个动点,N(2,0)是一个定点,则|PQ|+|PN|的最小值为(
A.3
B.4
C.5
D. +1

查看答案和解析>>

同步练习册答案