精英家教网 > 高中数学 > 题目详情
5.已知x,y,z均为正实数,求证:x2+y2+z2≥xy+xz+yz.

分析 由x,y,z均为正实数,由于重要不等式a2+b2≥2ab,运用累加法,即可得证.

解答 证明:由x,y,z均为正实数,
则x2+y2≥2xy,
y2+z2≥2yz,
z2+x2≥2zx,
相加可得,
x2+y2+z2≥xy+xz+yz,
当且仅当x=y=z时,取得等号.

点评 本题考查不等式的证明,考查重要不等式的运用和累加法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x<0}\\{x,x≥0}\end{array}\right.$,作出f(x)的图象;求$\underset{lim}{x→{0}^{+}}$f(x)与$\underset{lim}{x→{0}^{-}}$f(x);判别$\underset{lim}{x→0}$f(x)是否存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象如图所示:
(1)求ω和φ的值,并写出函数f(x)的表达式;
(2)求最小正实数m,使得函数f(x)的图象向左平移m个单位所对应的函数g(x)是偶函数.
(3)在(2)的条件下,若函数y=h(x)与函数g(x)的图象关于直线x=$\frac{1}{2}$对称,试求当x∈[1,$\frac{4}{3}$]时函数y=h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}满足a1=1,an+1-an=2n,则a5=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(2a+1)x2+(a2+a)x.若函数f(x)在x=1处取得极大值,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,多面体ABCD-EGF中,底面ABCD为正方形,GD∥FC∥AE,AE⊥平面ABCD,其正视图,俯视图及相关数据如图.
(1)求证:BE∥平面CDGF;
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,且AC⊥BC,P为$\widehat{{A}_{1}{B}_{1}}$上的动点.
(1)证明:PA1⊥平面PBB1
(2)设半圆柱和多面体ABB1A1C的体积分别为V1,V2,若V1:V2=3π:4,证明:AC=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是周期为2的函数,当-1≤x≤1时,f(x)=$\left\{\begin{array}{l}{{x}^{2},-1≤x<0}\\{kx-1,0≤x≤1}\end{array}\right.$,则f($\frac{17}{4}$)=(  )
A.0B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若0<a<b,求证:(a2+b2)(a-b)>(a2-b2)(a+b)

查看答案和解析>>

同步练习册答案