精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲
已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.
分析:(法一)利用柯西不等式(a+b+c)2=(a•1+b•1+c•1)2≤(a2+b2+c2)(12+12+12),即可求解;
(法二)直接利用基本不等式,即可求解.
解答:解:(法一)∵a,b,c∈R,a2+b2+c2=1,
∴(a+b+c)2=(a•1+b•1+c•1)2≤(a2+b2+c2)(12+12+12)=3.   5分
当且仅当a=b=c=
3
3
时,a+b+c取得最大值
3
.7分
(法二)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac
∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤a2+b2+c2+(a2+b2)+(b2+c2)+(a2++c2)3分
∵a2+b2+c2=1,
∴(a+b+c)2≤3,当且仅当a=b=c=
3
3
时等号成立,6分
∴a+b+c的最大值为
3
. 7分.
点评:本题主要考查一般形式的柯西不等式的应用,掌握柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案