精英家教网 > 高中数学 > 题目详情
18.如图,在平面直角坐标系中,分别在x轴与直线$y=\frac{{\sqrt{3}}}{3}({x+1})$上从左向右依次取点Ak、Bk,k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是512.

分析 设直线与x轴交点坐标为P,由直线$y=\frac{{\sqrt{3}}}{3}({x+1})$的倾斜角为300,又△A1B1A2是等边三角形$\sqrt{3}$,求出△A2B2A3、…找出规律,就可以求出△A10B10A11的边长.

解答 解:∵直线$y=\frac{{\sqrt{3}}}{3}({x+1})$的倾斜角为300,且直线与x轴交点坐标为P(-1,0),
又∵△A1B1A2是等边三角形,∴∠B1A1A2=600,B1A1=1,PA2=2,
∴△A2B2A3的边长为PA2=2,同理 B2A2=PA3=4,…以此类推
B10A10=PA10=512,∴△A10B10A11的边长是512,
故答案为:512.

点评 本题考查了直线的倾斜角,等边三角形的性质,及归纳推理的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若不等式|x-m|<1成立的充分不必要条件是1<x<2,则实数m的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(  )
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于函数f(x)=x3-3x2+6x的单调性是(  )
A.增函数B.先增后减C.先减后增D.减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,则$\frac{y}{x}$的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$则称数列{an}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{bn}为“段比差数列”.
(1)若{bn}的首项、段长、段比、段差分别为1、3、q、3.
①当q=0时,求b2016
②当q=1时,设{bn}的前3n项和为S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$对n∈N*恒成立,求实数λ的取值范围;
(2)设{bn}为等比数列,且首项为b,试写出所有满足条件的{bn},并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的面积为$\sqrt{3}$,且∠C=30°,BC=2$\sqrt{3}$,则AB等于(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={-1,1},B={1,-1,3},那么A∩B=等于(  )
A.{-1}B.{1}C.{-1,1}D.{1,-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设实数a,b满足约束条件$\left\{\begin{array}{l}a+b-2≥0\\ b-a-1≤0\\ a≤1\end{array}\right.$,则$\frac{b+2}{a+2}$的取值范围为$[1,\frac{7}{5}]$.

查看答案和解析>>

同步练习册答案