【题目】已知函数.
(1)若,求曲线在点处的切线方程;
(2)求的极值;
(3)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.
【答案】(1);(2);(3).
【解析】
(1)求导,把代入导函数中,求出曲线在点处的切线的斜率,再求出的值,写出切线的点斜式方程,最后化为一般式;
(2)对函数进行求导,让导函数为零,求出零点,然后判断函数的单调性,最后求出的极值;
(3)函数的图象与函数的图象在区间上有公共点,即在区间上,有解,这就要求函数在上的最大值大于等于1,最小值小于等于1即可,结合(2)进行分类讨论,利用导数判断出函数的单调区间,求出函数的最大值,最后求出实数的取值范围.
(1)因为,所以,所以有,
而,曲线在点处的切线方程为:
;
(2)函数的定义域为, ,
令,得,当时,是增函数;
当时,是减函数,所以函数在处取得极大值,即为,所以的极值为;
(3)①当时,即时,由(2)可知:当时,函数单调递增,当时,函数单调递减,函数在处取得极大值,即为,所以的最大值为,又当时,函数的值为零,故当
时,,当时,,函数的图象与函数的图象在区间上有公共点,等价于,解得;
②当时,即时,由(2)可知函数在上单调递增,函数在上的最大值为,原问题等价于,解得,而,所以无解,综上所述:实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】给出如下四个命题:①若“且”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数的导函数的图象,给出下列命题:①-2是函数的极值点;②1是函数的极值点;③在处切线的斜率小于零;④在区间上单调递增.则正确命题的序号是_______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2) 已知点的极坐标为,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域和值域均为[-a,a]的函数y=和y=g(x)的图象如图所示,其中a>c>b>0,给出下列四个结论正确结论的是( )
A.方程f[g(x)]=0有且仅有三个解B.方程g[f(x)]=0有且仅有三个解
C.方程f[f(x)]=0有且仅有九个解D.方程g[g(x)]=0有且仅有一个解
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com