精英家教网 > 高中数学 > 题目详情
已知:f(x)=x2+px+q.
求证:(1)f(1)+f(3)-2f(2)=2;
(2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于
【答案】分析:(1)根据函数f(x)的解析式,分别将x=1,2,3代入求得f(1),f(3),f(2),进而求得f(1)+f(3)-2f(2);
(1)“至少有一个不小于”的反面情况较简单,比较方便证明,故从反面进行证明,用反证法.
解答:证明:(1)∵f(x)=x2+px+q
∴f(1)=1+p+qf(2)=4+2p+qf(3)=9+3p+q
所以f(1)+f(3)-2f(2)
=(1+p+q)+(9+3p+q)-2(4+2p+q)
=2;
(2)假设|f(1)|,|f(2)|,|f(3)|都小于

即有
∴-2<f(1)+f(3)-2f(2)<2
由(1)可知f(1)+f(3)-2f(2)=2,
与-2<f(1)+f(3)-2f(2)<2矛盾,
∴假设不成立,即原命题成立.
点评:反证法是一种从反面的角度思考问题的证明方法,体现的原则是正难则反.反证法的基本思想:否定结论就会导致矛盾,证题模式可以简要的概括为“否定→推理→否定”.实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函数f(x)的极值;
(2)若函数f(x)在(1,2)上是增函数,g(x)在(0,1)上为减函数,求f(x),g(x)的表达式;
(3)对于(2)中的f(x),g(x),求证:当x>0时,方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宜春一模)已知方程f(x)=x2+ax+2b的两根分别在(0,1),(1,2)内,则f(3)的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,且对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差数列{bn}的任一项bn∈A∩B,其中b1是A∩B中最的小数,且88<b8<93,求{bn}的通项公式;
(3)设数列{cn}满足cn=
nan-1
,是否存在正整数p,q(1<p<q),使得c1,cp,cq成等比数列?若存在,求出所有的p,q的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知函数f(x)=
-x2+1   ,x<1
log2x   ,x≥1
,若f(a)=1,则a=
0或2
0或2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知函数f(x)=x2+x,f'(x)为函数f(x)的导函数.
(Ⅰ)若数列{an}满足an+1=f'(an),且a1=1,求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=b,bn+1=f(bn).
(ⅰ)是否存在实数b,使得数列{bn}是等差数列?若存在,求出b的值;若不存在,请说明理由;
(ⅱ)若b>0,求证:
n
i=1
bi
bi+1
1
b

查看答案和解析>>

同步练习册答案