精英家教网 > 高中数学 > 题目详情

【题目】已知为平面上一点,为直线上任意一点,过点作直线的垂线,设线段的中垂线与直线交于点,记点的轨迹为.

1)求轨迹的方程;

2)过点作互相垂直的直线,其中直线与轨迹交于点,直线与轨迹交于点,设点分别是的中点,求的面积的最小值.

【答案】1;(2.

【解析】

1)利用轨迹与方程的思想,构造等量关系,求轨迹方程;

2)用直线斜截式方程设直线方程与曲线方程联立,利用韦达定理求出点坐标,可将的面积表示为关于直线斜率的函数,利用函数性质求的面积的最小值.

1)设点,设的中点为,则

的中垂线,

时,

时,,则

综上所述点的轨迹的方程为

2)设直线的斜率为

,则直线的斜率为

∵直线与轨迹交于点,直线与轨迹交于点

∴直线的方程为,直线的方程为

,联立直线与曲线方程

且点的中点,

同理

设点到直线的距离为

的面积的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,PCBC,点EPC的中点,且平面PBC⊥平面ABCD.求证:

1)求证:PA∥平面BDE

2)求证:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:

1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;

2)设所有50名骑手在相同时间内完成订单数的平均数,将完成订单数超过记为“优秀”,不超过记为“一般”,然后将骑手的对应人数填入下面列联表;

优秀

一般

甲配送方案

乙配送方案

3)根据(2)中的列联表,判断能否有的把握认为两种配送方案的效率有差异.

附:,其中.

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是(

A.城乡居民储蓄存款年底余额逐年增长

B.农村居民的存款年底余额所占比重逐年上升

C.2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额

D.城镇居民存款年底余额所占的比重逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm)在区间.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.

1)请根据频率分布直方图估计样本的平均数和方差(同一组中的数据用该组区间的中点值代表);

2)根据样本数据,可认为受阅女兵的身高Xcm)近似服从正态分布,其中近似为样本平均数近似为样本方差.

i)求

ii)若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm以上的概率.

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)己知函数有两个极值点

①比较的大小;

②若函数在区间上有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过的直线与抛物线相交于两点.

1)若点是点关于坐标原点的对称点,求面积的最小值;

2)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫(Pectinophora gossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①,②分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.

根据收集到的数据,计算得到如下值:

25

2.89

646

168

422688

48.48

70308

表中

1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;

2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.

(参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:

健身族

非健身族

合计

男性

40

10

50

女性

30

20

50

合计

70

30

100

(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?

(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?

参考公式: ,其中.

参考数据:

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

同步练习册答案