精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点.若|AF|=3,则|BF|=    .
由题意知,抛物线的焦点F的坐标为(1,0),又|AF|=3,由抛物线定义知,点A到准线x=-1的距离为3

∴点A的横坐标为2.
将x=2代入y2=4x得y2=8,
由图知点A的纵坐标y=2,
∴A(2,2),
∴直线AF的方程为y=2(x-1).
解得
由图知,点B的坐标为,
∴|BF|=-(-1)=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,抛物线关于轴对称,它的顶点在坐标原点,点均在抛物线上.

(1)写出该抛物线的方程及其准线方程;
(2)当的斜率存在且倾斜角互补时,求的值及直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不过原点的直线交于两点,若使得以为直径的圆过原点,则直线必过点(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线x2=4y上有一条长为6的动弦AB,则AB中点到x轴的最短距离为(  )
A.B.C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为(  )
A.(-2,-9)B.(0,-5)
C.(2,-9) D.(1,-6)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(  )
A.2 B.2C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,抛物线C1:y2=4x和圆C2:(x-1)2+y2=1,直线l经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则·的值是   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对抛物线,下列描述正确的是
A.开口向上,焦点为B.开口向上,焦点为
C.开口向右,焦点为D.开口向右,焦点为

查看答案和解析>>

同步练习册答案