精英家教网 > 高中数学 > 题目详情

【题目】在某次数学考试中,小江的成绩在90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.计算:

1)小江在此次数学考试中取得80分及以上的概率;

2)小江考试及格(成绩不低于60分)的概率.

【答案】1;(2.

【解析】

1)根据题意,运用互斥事件的概率加法公式计算,即可求解.

2)方法一:根据互斥事件概率加法公式可计算;方法二:根据对立事件的概率公式,计算可求解.

1)分别记小江的成绩在90分以上,在为事件,这四个事件彼此互斥.

小江的成绩在80分及以上的概率.

2)方法一:小江考试及格(成绩不低于60分)的概率

.

方法二:小江考试不及格(成绩在60分以下)的概率是0.07,根据对立事件的概率公式,得小江考试及格(成绩不低于60分)的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.

1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;

2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;

3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 aRe为自然对数的底数),,其中x=0处的切线方程为y=bx.

1)求ab的值;

2)求证:

3)求证:有且仅有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点.当时,;当时,.

(Ⅰ)求的值及曲线 极坐标方程;

(Ⅱ)求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时的类周期,函数上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时, 函数.若,使成立,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设的极值点.求,并求的单调区间;

2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角所对的边分别为,下列命题:(1)三边既成等差数列,又成等比数列,则是等边三角形;(2)若,则是等腰三角形;(3)若,则;(4)若,则;(5,若唯一确定,则.其中,正确命题是(

A.1)(3)(4B.1)(2)(3C.1)(2)(5D.3)(4)(5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:

(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)

(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%)已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点.

1)求椭圆的方程;

2)若,且,求的值(点为坐标原点);

3)若坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

同步练习册答案