精英家教网 > 高中数学 > 题目详情

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

(1)只需证;(2);(3)存在M即为点E。

解析试题分析:四边形为正方形,所以,以OD为 x轴,OB为y轴,OP为z轴建立空间直角坐标系                                              …1分
(1),所以,因为,所以 ,所以平面…………4分
(2)平面的法向量为,平面的法向量为
解得二面角的余弦值为                           ……8分
(3)设=,则
,解得 ,存在M即为点E                ……12分
考点:线面垂直的判定定理;二面角;线面平行的判定定理。
点评:证明线面垂直的常用方法:
①线线垂直Þ线面垂直
若一条直线垂直平面内两条相交直线,则这条直线垂直这个平面。

②面面垂直Þ线面垂直
两平面垂直,其中一个平面内的一条直线垂直于它们的交线,则这条直线垂直于另一个平面。

③两平面平行,有一条直线垂直于垂直于其中一个平面,则这条直线垂直于另一个平面。

④两直线平行,其中一条直线垂直于这个平面,则另一条直线也垂直于这个平面。
   即
⑤向量法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:直三棱柱ABC中,,D为AB中点。

(1)求证:
(2)求证:∥平面
(3)求C1到平面A1CD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CA B=45o,∠DAB=60o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图).

(1)求证:OF//平面ACD;
(2)求二面角C- AD-B的余弦值;
(3)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直线AG与平面ACD所成角的正弦值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)如图,在正方体ABCDA1B1C1D1中,EF为棱ADAB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,在多面体ABCDEF中,底面ABCD是 平行四边形,AB=2EFEFAB,,HBC的中点.求证:FH∥平面EDB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求PC与平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。
 
(I)求三棱锥D1—ACE的体积;
(II)求异面直线D1E与AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

同步练习册答案