精英家教网 > 高中数学 > 题目详情
14.已知点M(-5,0),N(0,5),P为椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上一动点,则S△MNP的最小值为5.

分析 求出与MN平行的直线的斜率,设出与MN平行的直线方程与椭圆联立,利用判别式为0,求出直线方程,求出平行线之间的距离,然后求解面积.

解答 解:点M(-5,0),N(0,5),斜率为:1,MN的方程为:x-y+5=0,
与MN平行的直线方程设为y=x+n,
直线与椭圆联立消去y可得:$\frac{{x}^{2}}{6}$+$\frac{{(x+n)}^{2}}{3}$=1,
可得3x2+4nx+2n2-6=0,
△=16n2-12(2n2-6)=0,解得n=3.
与MN平行的直线方程为:x-y+3=0,
平行线之间的距离为:$\frac{|5-3|}{\sqrt{2}}$=$\sqrt{2}$,
|MN|=5$\sqrt{2}$,
则S△MNP的最小值为:$\frac{1}{2}×5\sqrt{2}×\sqrt{2}$=5.
故答案为:5.

点评 本题考查直线与椭圆的位置关系的应用,椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知P是双曲线$\frac{{x}^{2}}{3}$-y2=1上任意一点,过点P分别作曲线的两条渐近线的垂线,垂足分别为A、B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的值是(  )
A.-$\frac{3}{8}$B.$\frac{3}{16}$C.-$\frac{\sqrt{3}}{8}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow{b}$=(0,-1,4),求$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{a}$•$\overrightarrow{b}$,(2$\overrightarrow{a}$)•(-$\overrightarrow{b}$),($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x(x∈R),求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=cos2ωx-$\sqrt{3}$sin2ωx,f(x)的最小正周期是π.
(1)求f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)+m≤3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求异面直线BC1与A1D所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若存在斜率且过点P(-1,-$\frac{b}{a}$)的直线l与双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$有且仅有一个公共点,且这个公共点恰是双曲线的左顶点,则双曲线的实轴长等于(  )
A.2B.4C.1或2D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.长方体长、宽、高分别为2、2、4,则它的体积等于(  )
A.4B.8C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=1-4cosx-2sin2x的最小值.

查看答案和解析>>

同步练习册答案