分析 由已知求出cosθ,进一步得到sin2θ与cos2θ的值,展开两角差的正弦得答案.
解答 解:∵sinθ=$\frac{\sqrt{5}}{5}$,θ∈(0,$\frac{π}{2}$),
∴cosθ=$\sqrt{1-si{n}^{2}θ}=\frac{2\sqrt{5}}{5}$,
∴sin(2θ-$\frac{π}{4}$)=$sin2θcos\frac{π}{4}-cos2θsin\frac{π}{4}$
=$\frac{\sqrt{2}}{2}(sin2θ-cos2θ)$=$\frac{\sqrt{2}}{2}(2sinθcosθ-1+2si{n}^{2}θ)$
=$\frac{\sqrt{2}}{2}(2×\frac{\sqrt{5}}{5}×\frac{2\sqrt{5}}{5}-1+2×\frac{1}{5})$=$\frac{\sqrt{2}}{10}$.
故答案为:$\frac{\sqrt{2}}{10}$.
点评 本题考查三角函数的化简求值,考查倍角公式的应用,是基础的计算题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5$\sqrt{2}$-4 | B. | $\sqrt{17}$-1 | C. | 6-2$\sqrt{2}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 2 | C. | 81 | D. | $\frac{81}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1-$\frac{\sqrt{3}π}{6}$ | B. | 1-$\frac{\sqrt{3}π}{12}$ | C. | 1-$\frac{\sqrt{3}π}{9}$ | D. | 1-$\frac{\sqrt{3}π}{18}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com