精英家教网 > 高中数学 > 题目详情

已知函数,如果函数恰有两个不同的极值点,且.
(Ⅰ)证明:;(Ⅱ)求的最小值,并指出此时的值.

(Ⅰ)详见解析;(Ⅱ)最小值为,此时.

解析试题分析:(Ⅰ)函数有两个不同的极值点,等价于有两个不等的实数根,即有两个不同的零点,利用导数判断的形状, ,发现函数当时,是减函数;当时,是增函数,故;(Ⅱ),又,故,是自变量为,定义域的函数,利用导数求其最值,并计算相应的值.
试题解析:(Ⅰ)∵ 函数恰有两个不同的极值点,即有两个零点
∴方程有两个不同的零点, 令,当时,是减函数;当时,是增函数,∴ 时取得最小值.

(Ⅱ)∵,即,∴,于是
, ∴,∵,∴
∴ 当时,是减函数;当时,是增函数.
上的最小值为,此时.
考点:1、导数在单调性上的应用;2、利用导数求函数的极值和最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=在x=0,x=处存在极值。
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数
(1)若,求曲线在点处的切线方程;
(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,曲线在点处的切线垂直于轴.
(Ⅰ)求的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)当时,求函数的单调递增区间;
(2)若任取,求函数上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中,曲线在点处的切线垂直于轴.
(1)求的值;
(2)求函数的极值.

查看答案和解析>>

同步练习册答案