分析 解两个不等式,可得p:x∈(-∞,-$\frac{1}{2}$]∪[2,+∞),q:x∈(-∞,a-2]∪[a,+∞),若p是q充分不必要条件,则(-∞,-$\frac{1}{2}$]∪[2,+∞)?(-∞,a-2]∪[a,+∞),解得答案.
解答 解:解2x2-3x-2≥0得:x∈(-∞,-$\frac{1}{2}$]∪[2,+∞),
解x2-2(a-1)x+a(a-2)得:x∈(-∞,a-2]∪[a,+∞),
若p是q充分不必要条件,
则(-∞,-$\frac{1}{2}$]∪[2,+∞)?(-∞,a-2]∪[a,+∞),
∴$\left\{\begin{array}{l}-\frac{1}{2}≤a-2\\ 2≥a\end{array}\right.$,
解得:a∈[$\frac{3}{2}$,2]
点评 本题考查的知识点是充要条件,二次不等式的解法,将p是q充分不必要条件,转化为两个集合的包含关系,是解答的关键.
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=$\sqrt{x^2}$,y=|x| | B. | y=$\frac{x^2}{x}$,y=x | ||
C. | y=$\sqrt{x^2}$,$y={(\sqrt{x})^2}$ | D. | y=$\sqrt{x+1}•\sqrt{x-1}$,y=$\sqrt{{x^2}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com