精英家教网 > 高中数学 > 题目详情
20.设全集为R,集合M={x|x2≤2},N={x|log2x<1},则M∩N=(  )
A.(-∞,2)B.(-∞,$\sqrt{2}$]C.(0,$\sqrt{2}$]D.(0,2)

分析 分别求解一元二次不等式和对数不等式化简集合M,N,然后利用交集运算得答案.

解答 解:∵M={x|x2≤2}={x|$-\sqrt{2}≤x≤\sqrt{2}$},N={x|log2x<1}={x|0<x<2},
∴M∩N={x|0$<x≤\sqrt{2}$}=(0,$\sqrt{2}$].
故选:C.

点评 本题考查交集及其运算,考查了对数不等式及一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知二次函数满足f(0)=-1,且对任意x都有f(x+1)=f(x)+2x+1,又g(x)=x+1.
(1)求f(x)的解析式;
(2)若当x∈[1,2]时,不等式f(x)≥t[g(x)-1]恒成立,求实数t的取值范围;
(3)设函数F(x)=$\frac{f(x)+1+a}{g(x)-1}$+b,若对任意a∈[$\frac{1}{2}$,2],不等式F(x)≤10在x∈[$\frac{1}{4}$,1]上恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+(2m-1)$\overrightarrow{{e}_{2}}$+(4-n)$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=-2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$+($\frac{1}{2}$n+2)$\overrightarrow{{e}_{3}}$,($\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$为单位正交基底),且$\overrightarrow{a}$∥$\overrightarrow{b}$,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列结论正确的是(  )
A.若A=R,B=(0,+∞),则f:x→|x|是集合A到集合B的函数
B.若A={x|0≤x≤4},B={y|0≤y≤3},则f:y=$\frac{2}{3}$x是集合A到集合B的映射
C.函数的图象与y轴至少有1个交点
D.若y=f(x)是奇函数,则其图象一定经过原点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{1-lo{g}_{2}(2-x)(x<2)}\\{{2}^{1-x}+\frac{3}{2}(x≥2)}\end{array}\right.$,则f(f(3))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正方体ABCD一A1B1C1D1中,四对异面直线,AC与A1D,BD1与AD,A1C与AD1,BC与AD1,其中所成角不小于60°的异面直线有(  )
A.4对B.3对C.2对D.1对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在同一平面直角坐标系中,曲线C:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后,变为曲线C′.
(1)求曲线C′的方程;
(2)在曲线C′上求一点P,使点P到直线x+2y-8=0的距离最小,求出最小值并写出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,若集合A={x|-1≤x≤5},B={x|y=lg(x-1)},则∁U(A∩B)为(  )
A.{1<x≤5}B.{x≤-1或x>5}C.{x≤1或x>5}D.{1≤x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$(2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数λ的取值范围是λ>-1且λ≠4.

查看答案和解析>>

同步练习册答案