精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设轴交于点,不同的两点上(也不重合),且满足,求的取值范围.

(1);(2);(3).

解析试题分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,利用直线与圆相切列出距离公式,求出椭圆中的基本量,比较简单;第二问,考查抛物线的定义,本问主要考查理解题意的能力;第三问,与向量相结合,再加上基本不等式求最值.
试题解析:(1)由直线与圆相切,得,即.
,得,所以,所以椭圆的方程是. (4分)
(2)由条件,知,即动点到定点的距离等于它到直线的距离,由抛物线的定义得点的轨迹的方程是.(6分)
(3)由(2)知,设

,得
,∴
,当且仅当,即时等号成立.

,∴当,即时,.
的取值范围是.(12分)
考点:1.椭圆的标准方程;2.点到直线的距离公式;3.抛物线的定义;4.基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆抛物线的焦点均在轴上,的中心和 的顶点均为坐标原点从每条曲线上取两个点,将其坐标记录于下表中:











(Ⅰ)求分别适合的方程的点的坐标;
(Ⅱ)求的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点,椭圆的离心率
(I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.

(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2) ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点Q是点P关于原点的对称点.

(1)设,证明:
(2)设直线AB的方程是,过两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案