【题目】若四面体的六条棱长分别为2,3,4,5, 6,7,则不同的形状有______种(若两个四面体经适当放置后可完全重合,则认为是相同的形状).
【答案】10.
【解析】
将长为k的棱记为.考虑.
(1) 共面,则该面的另一边必为.
(i)若按顺时针方向组成三角形(均指从形内向该面看三边的绕向,下同),则边不能取 (否则,将使的三边为2,5,7,矛盾)
若取,,有2种情况;
若取,,也有2种情况. 共得4种情况.
(ii)若按逆时针方向组成三角形,类似也得4种情况.
(2)异面,设,.则其余四条边,每一条皆与相邻,于是所在面的另一条边必为.
(i)若按顺时 针方向组成三角形,不妨设,,剩 下两条边,不能取,故只有, ,得1 种情况.
(ii)若按逆时针方向组成三角形,类似也得1种情况. 因此,本题中不同的形状有10种.故答案为:10
科目:高中数学 来源: 题型:
【题目】设有限数列,定义集合为数列的伴随集合.
(Ⅰ)已知有限数列和数列.分别写出和的伴随集合;
(Ⅱ)已知有限等比数列,求的伴随集合中各元素之和;
(Ⅲ)已知有限等差数列,判断是否能同时属于的伴随集合,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.
(1)依据数据的散点图可以看出,可用线性回归模型拟合与的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);
(2)求关于的回归方程,并预测液体肥料每亩使用量为千克时,西红柿亩产量的增加量约为多少?
附:相关系数公式,回归方程中斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形为一张台球桌面,,.从点击出一个球,其可无限次经台球桌四边反弹运行.已知该球经过矩形的中心.
(1)试求所有整点 的个数,使得该球可以经过点;
(2)若该球在上述、两点间的最短路径长为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:
(Ⅰ)求这100人睡眠时间的平均数(同一组数据用该组区间的中点值代替,结果精确到个位);
(Ⅱ)由直方图可以认为,人的睡眠时间近似服从正态分布,其中近似地等于样本平均数,近似地等于样本方差,.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数.
附:.若随机变量服从正态分布,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆 ()的左、右焦点分别为,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为.
(1)求椭圆的方程;
(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,,设弦,的中点分别为,证明:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com