精英家教网 > 高中数学 > 题目详情

【题目】(2016·雅安高一检测)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定义域;

(2)求函数g(x)的最大值和最小值.

【答案】(1)g(x)=22x-2x+2,{x|0≤x≤1}.(2)最小值-4;最大值-3.

【解析】解:(1∵f(x)=2x∴g(x)=f(2x)-f(x+2)=22x-2x+2(3')

因为f(x)的定义域是[0,3],所以,解之得0≤x≤1

于是 g(x)的定义域为{x|0≤x≤1}(或写成[0,1],否则扣1) (6')

2)设g(x)=(2x)2-4×2x=(2x-2)2-4(8')

∵x∈[0,1],2x∈[1,2]2x=2x=1时,g(x)取得最小值-4(10')

2x=1x=0时,g(x)取得最大值-3(12')

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a22a58

1)求{an}的通项公式;

2)各项均为正数的等比数列{bn}中,b11b2b3a4,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图,圆、椭圆均经过点M,圆的圆心为,椭圆的两焦点分别为.

(Ⅰ)分别求圆和椭圆的标准方程;

(Ⅱ)过作直线与圆交于两点,试探究是否为定值?若是定值,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法.所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率(圆周率指圆周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径

,此时圆内接正六边形的周长为

,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当用正二十四边形内接于圆时,按照上述算法,可得圆周率为__________.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足f(logax)=·(x)(其中a>0且a≠1).

(1)求函数f(x)的解析式,并判断其奇偶性和单调性;

(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在R上的奇函数xyR都有f(xy)f(x)f(y)且当x>0f(x)<0f(1)2.

(1)求证:f(x)为奇函数;

(2)求证:f(x)R上的减函数;

(3)f(x)[24]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数的解析式为f(x)= (a∈R).

(1)试求a的值;

(2)写出f(x)在[0,1]上的解析式;

(3)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生4名女生站成一排,求满足下列条件的排法:

(1)女生都不相邻有多少种排法?

(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?

(3)男甲不在首位,男乙不在末位,有多少种排法?

查看答案和解析>>

同步练习册答案