(本题11分)已知圆,过原点的直线与圆相交于两点
(1) 若弦的长为,求直线的方程;
(2)求证:为定值。
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆:交轴于两点,曲线是以为长轴,直线:为准线的椭圆.
(1)求椭圆的标准方程;
(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;
(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知⊙和点.
(Ⅰ)过点向⊙引切线,求直线的方程;
(Ⅱ)求以点为圆心,且被直线截得的弦长为4的⊙的方程;
(Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2,).
(1)求以OB为直径的圆C的极坐标方程,然后化成直角方程;
(2)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的一动点.
(1)证明:面PAC面PBC;
(2)若,则当直线与平面所成角正切值为时,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com