精英家教网 > 高中数学 > 题目详情
16.已知椭圆C中心在原点,长轴在x轴上,F1、F2为其左、右两焦点,点P为椭圆C上一点,PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)若倾斜角为45°的一动直线l与椭圆C相交于A、B两点,求△AOB(O为坐标原点)面积的最大值及相应的直线l的方程.

分析 (1)利用PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$,求出a,c,可得a2-c2=1,即可求椭圆C的方程;
(2)设直线L的方程为y=x+b,与椭圆方程联立消元得3x2+4bx+2b2-2=0;再由韦达定理及两点间的距离公式求|AB|的长度,再求点O到直线AB的距离,从而写出△AOB的面积S,利用基本不等式求最值及最值点.从而得到直线l的方程.

解答 解:(1)∵PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
∴2a=|PF1|+|PF2|=2$\sqrt{2}$,2c=$\sqrt{\frac{18}{4}-\frac{2}{4}}$=2,
∴a=$\sqrt{2}$,c=1,
∴a2-c2=1,
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1;
(2)设直线L的方程为y=x+b,
则与$\frac{{x}^{2}}{2}+{y}^{2}$=1联立消y可得3x2+4bx+2b2-2=0,
△=(4b)2-4×3×(2b2-2)>0,
解得-$\sqrt{3}$<b<$\sqrt{3}$.
设A(x1,y1),B(x2,y2),则由韦达定理可得,x1+x2=-$\frac{4b}{3}$,x1x2=$\frac{2{b}^{2}-2}{3}$;
故|AB|=$\sqrt{2}$|x1-x2|=$\sqrt{2}•\sqrt{(-\frac{4b}{3})^{2}-4×\frac{2{b}^{2}-2}{3}}$=$\frac{2}{3}$$\sqrt{12-4{b}^{2}}$;
点O到直线AB的距离d=$\frac{|b|}{\sqrt{2}}$
故△AOB的面积S=$\frac{1}{2}$×$\frac{2}{3}$$\sqrt{12-4{b}^{2}}$×$\frac{|b|}{\sqrt{2}}$=$\frac{\sqrt{2}}{3}\sqrt{(3-{b}^{2}){b}^{2}}$≤$\frac{\sqrt{2}}{3}•\frac{3-{b}^{2}+{b}^{2}}{2}$=$\frac{\sqrt{2}}{2}$
(当且仅当3-b2=b2,即b=±$\frac{\sqrt{6}}{2}$时,等号成立);
故此时直线L的方程为:y=x±$\frac{\sqrt{6}}{2}$.

点评 本题考查了圆锥曲线的求法及直线与圆锥曲线的交点及形成的图象的面积问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:
①中位数为84;
②众数为85;
③平均数为85; 
④极差为12;
其中,正确说法的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=log2(4x)•log2(2x)的定义域为[$\frac{1}{4}$,4],
(1)若t=log2x,求t的取值范围;
(2)求y=f(x)的最大值与最小值,并求出最值时对应的x的值.
(3)解不等式f(x)-6>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=log2(4-3x)+$\sqrt{x+2}$,则函数f(x)的定义域为[-2,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax+(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t-2x)>0恒成立的t的取值范围;
(3)若f(1)=$\frac{3}{2}$,设g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值为-1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,A、B分别为其左、右顶点,P是双曲线右支上位于x轴上方的动点,则kPA+kPB的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[$\frac{5}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=sinx+cosx+2(x∈[0,$\frac{π}{2}$])的最小值是(  )
A.2-$\sqrt{2}$B.2+$\sqrt{2}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinC=2(1-cosC).
(1)求cosC;
(2)若c=2,且2sinAcosC=sinB,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且在(0,1)上,满足f(x)=$\frac{{x}^{2}-x}{2}$,则f(-2016$\frac{1}{2}$)=(  )
A.0B.$\frac{1}{4}$C.-$\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案