【题目】已知函数,其中.是自然对数的底数.
(1)若曲线在处的切线方程为.求实数的值;
(2)① 若时,函数既有极大值,又有极小值,求实数的取值范围;
② 若,.若对一切正实数恒成立,求实数的最大值(用表示).
【答案】(1).(2)①②
【解析】
试题(1)由导数几何意义得,又过过点(1,0),因此可列方程组,解得(2)①由题意得,导函数有两个不同的零点,即有两个不同的解,研究目标函数 得在区间上为减函数,在区间上为增函数,因此②先化简不等式:,再分别求证,(当且仅当都在处取到等号),最后利用不等式性质得
试题解析: (1) 由题意知曲线过点(1,0),且;又因为,则有解得.
(2)①当时,函数的导函数,若时,得,设 . 由 ,得,. 当时,,函数在区间上为减函数,;当时,,函数在区间上为增函数,;所以,当且仅当时,有两个不同的解,设为, .
此时,函数既有极大值,又有极小值.
②由题意对一切正实数恒成立,取得.下证对一切正实数恒成立.首先,证明. 设函数,则,当时,;当时,;得,即,当且仅当都在处取到等号. 再证. 设,则,当时,;当时,;得,即,当且仅当都在处取到等号. 由上可得,所以,即实数的最大值为.
科目:高中数学 来源: 题型:
【题目】在数列{an}中,已知,且2an+1=an+1(n∈N*).
(1)求证:数列{an-1}是等比数列;
(2)若bn=nan,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:
(1)求的值;
(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个长方体的容器中,里面装有少量的水,现在将容器绕着其底部的一条棱倾斜.
(1)在倾斜的过程中,水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)在倾斜的过程中,水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?
(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底面的一个顶点,上面的第(1)问和第(2)问对不对?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.
(1)求曲线C的轨迹方程
(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为的直线l与抛物线C交于A,B两点,B在x轴的上方,且点B的横坐标为4.
(1)求抛物线C的标准方程;
(2)设点P为抛物线C上异于A,B的点,直线PA与PB分别交抛物线C的准线于E,G两点,x轴与准线的交点为H,求证:HGHE为定值,并求出定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四面体ABCD中,点E,F分别是AB,BC的中点,则下列命题正确的序号是______
①异面直线AB与CD所成角为90°;
②直线AB与平面BCD所成角为60°;
③直线EF∥平面ACD
④平面AFD⊥平面BCD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com