精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的焦距为2,且过点.

1)求椭圆的方程;

2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程:若不存在,说明理由.

【答案】12)存在,

【解析】

1)把点的坐标代入椭圆方程,利用椭圆中的关系和已知,可以求出椭圆方程;

2)设直线的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线的方程.

解:(1)由已知可得:解得

所以椭圆.

2)由已知可得,,∴,∵

设直线的方程为:,代入椭圆方程整理得

,设

,∴.

因为

.

.

所以.

时,直线点,不合要求,所以.

故存在直线满足题设条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图放置的边长为1的正方形 沿 轴滚动(向右为顺时针,向左为逆时针).设顶点 的轨迹方程是,则关于的最小正周期在其两个相邻零点间的图像与x轴所围区域的面积S的正确结论是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)a1时,求不等式f(x)2的解集;

(2)若对任意xR,不等式f(x)≥a23a3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为实数.为该函数图象上的两个不同的点.

(1)指出函数的单调区间;

(2)若函数的图象在点处的切线互相平行,求的最小值;

(3)若函数的图象在点处的切线重合,求的取值范围.(只要求写出答案).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,射线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为.一只小虫从点沿射线向上以单位/min的速度爬行

1)以小虫爬行时间为参数,写出射线的参数方程;

2)求小虫在曲线内部逗留的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内一个动点M到定点F(30)的距离和它到定直线lx=6的距离之比是常数

(1)求动点M的轨迹T的方程;

(2)若直线lx+y-3=0与轨迹T交于AB两点,且线段AB的垂直平分线与T交于CD两点,试问ABCD是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

同步练习册答案