【题目】如图,平面平面,其中为矩形,为梯形,,,.
(Ⅰ)求证:平面;
(Ⅱ)若二面角的平面角的余弦值为,求的长.
【答案】(Ⅰ)见解析; (Ⅱ) .
【解析】
(Ⅰ)由条件易得和,从而可证得平面;
(Ⅱ)设AB=x.以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系,平面ABF的法向量可取=(0,1,0),通过求解平面BFD的法向量,进而利用法向量求二面角的余弦值列方程求解即可.
(Ⅰ)平面平面,且为矩形,
平面,又平面, ,又且
平面.
(Ⅱ)设AB=x.以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系.
则F(0,0,0),A(-2,0,0),E(0,,0),D(-1,,0),B(-2,0,x),
所以=(1,-,0),=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
设=(x1,y1,z1)为平面BFD的法向量,
则所以,可取=(,1,).
因为cos<,>==,得x=,所以AB=.
科目:高中数学 来源: 题型:
【题目】已知函数y=a-bcos(b>0)的最大值为,最小值为-.
(1)求a,b的值;
(2)求函数g(x)=-4asin的最小值并求出对应x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
房屋面积() | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.经过任意三点有且只有一个平面.
B.过点有且仅有一条直线与异面直线垂直.
C.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行.
D.面与平面相交,则公共点个数为有限个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
分数 | |||||
甲班频数 | 5 | 6 | 4 | 4 | 1 |
乙班频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以上统计数据填写下面列联表,并判断能否在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附:,其中.
临界值表
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示, 是海面上一条南北方向的海防警戒线,在 上点 处有一个水声监测点,另两个监测点 分别在 的正东方向 处和 处.某时刻,监测点 收到发自目标 的一个声波, 后监测点 后监测点 相继收到这一信号,在当时的气象条件下,声波在水中的传播速度是 .
(1)设 到 的距离为 ,用 分别表示 到 的距离,并求 的值;
(2)求目标 的海防警戒线 的距离(精确到 ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】山东省于2015年设立了水下考古研究中心,以此推动全省的水下考古、水下文化遗产保护等工作;水下考古研究中心工作站,分别设在位于刘公岛的中国甲午战争博物院和威海市博物馆。为对刘公岛周边海域水底情况进行详细了解,然后再选择合适的时机下水探摸、打捞,省水下考古中心在一次水下考古活动中,某一潜水员需潜水米到水底进行考古作业,其用氧量包含以下三个方面:
①下潜平均速度为米/分钟,每分钟的用氧量为升;
②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.4升;
③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升.
潜水员在此次考古活动中的总用氧量为升.
(Ⅰ)如果水底作业时间是分钟,将表示为的函数;
(Ⅱ)若,水底作业时间为20分钟,求总用氧量的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com