已知函数f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二问中,∵xÎ[0, ],∴2x-Î[-,],
∴当2x-=-,即x=0时,f(x)min=-,
当2x-=, 即x=时,f(x)max=1
第三问中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用构造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的减区间是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴当2x-=-,即x=0时,f(x)min=-, ……………………8分
当2x-=, 即x=时,f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
科目:高中数学 来源:2011-2012学年山东省济宁市高三12月月考试题文科数学 题型:解答题
(本题满分15分) 已知函数f (x)=x3+ax2+bx, a , bR.
(Ⅰ) 曲线C:y=f (x) 经过点P (1,2),且曲线C在点P处的切线平行于直线y=2x+1,求a,b的值;
(Ⅱ) 已知f (x)在区间 (1,2) 内存在两个极值点,求证:0<a+b<2.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题
已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题
已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:
(1)方程f [f (x)]=x一定无实根;
(2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使f [f (x0)]>x0;
(4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;
正确的序号有 .
查看答案和解析>>
科目:高中数学 来源:辽宁省2012届高二下学期期末考试数学(文) 题型:选择题
已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是 ( )
A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com