精英家教网 > 高中数学 > 题目详情


(1)求的单调区间;(2)求函数上的最值.

(1)单调增区间是,单调递减区间是;(2)最大值是,最小值是

解析试题分析:(1)首先利用牛顿-莱布尼兹公式求出函数的表达式,并注意题中所给的定义域为,再利用导数通过解不等式并与定义域取交集而求得函数的单调区间;(2)求函数最值的一般步骤:①求出函数在给定区间上的极值及区间的端点所对应的函数值;②比较上述值的大小;③得结论:其中最大者即为函数的最大值,最小者即为函数的最小值.
试题解析:依题意得,,定义域是
(1),
,得
,得
由于定义域是
函数的单调增区间是,单调递减区间是
(2)令,得
由于
上的最大值是,最小值是
考点:1.定积分的基本公式;2.函数的单调区间;3.函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若,求函数的极值点和极值;
(2)求函数在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数,),,⑴若,且函数的值域为,求的表达式;
⑵设,且函数为偶函数,判断是否大0?
⑶设,当时,证明:对任意实数(其中的导函数) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数满足:①在时有极值;②图像过点,且在该点处的切线与直线平行.
(1)求的解析式;
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值,求函数以及的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数,过点P的直线与曲线相切,求的方程;
(2)设,当时,在1,4上的最小值为,求在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处都取得极值.
(1)求的值;
(2)设函数,若对任意的,总存在,使得:,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
证明:(1)存在唯一,使
(2)存在唯一,使,且对(1)中的.

查看答案和解析>>

同步练习册答案