精英家教网 > 高中数学 > 题目详情
已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.
(Ⅰ)椭圆标准方程为:;(Ⅱ)详见解析.

试题分析:(Ⅰ)由题设可得,解这个方程组,便可得的值.再利用求出,便得椭圆的标准方程.
(Ⅱ)首先求出点M的坐标(这是一个确定的点).过M作两条直线,这两条直线是不定的,是动直线,就用点斜式把这两条直线的方程表示出来,然后分别与椭圆方程联立,可解出A、B两点的坐标,然后用斜率公式求出直线的斜率.
试题解析:(Ⅰ)由准线为知焦点在轴上,则可设椭圆方程为:
得:,所以椭圆标准方程为:
(Ⅱ)∵斜率k存在,不妨设k>0,求出M(,2).直线MA方程为,直线MB方程为
分别与椭圆方程联立,可解出.
.  ∴(定值).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴除外的另一个交点.
(I)求抛物线与圆的方程;
( II)已知直线交于两点,交于点,且, 求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右焦点,椭圆的离心率
(I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且的面积为20,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)抛物线y2=4x的焦点到双曲线的渐近线的距离是(  )
A.B.C.1D.

查看答案和解析>>

同步练习册答案