【题目】如下图,已知四棱锥中,底面为菱形,平面,,,分别是,的中点.
(I)证明:平面;
(II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)记,求证:函数在区间内有且仅有一个零点;
(2)用表示中的最小值,设函数,若关于的方程(其中为常数)在区间有两个不相等的实根,记在内的零点为,试证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线:(为参数),曲线:(为参数).
(1)设与相交于,两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是数列的前n项和,满足,正项等比数列的前n项和为,且满足.
(Ⅰ) 求数列{an}和{bn}的通项公式; (Ⅱ) 记,求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 是边长为3的正方形, 平面, 平面, .
(1)证明:平面平面;
(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在上为增函数,且,为常数, .
(1)求的值;(2)若在上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com