精英家教网 > 高中数学 > 题目详情

【题目】图,已知四棱锥中,底面为菱形,平面分别是的中点.

I)证明:平面

II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.

【答案】(I证明见解析;(II存在且.

【解析】

试题分析:I先证明,再证明,所以有平面,所以,所以平面II设线段上存在一点,连接.由(I)知,平面,则与平面所成的角.最短时,即当时,最大,此时.

试题解析:

证明:由四边形为菱形,,可得为正三角形,

因为的中点,所以.

,因此.

因为平面平面

所以.

平面平面

所以平面.

II)解:设线段上存在一点,连接.

由(I)知,平面

与平面所成的角.

中,

所以当最短时,即当时,最大,

此时,因此.

所以,线段上存在点

时,使得与平面所成最大角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】知函数

1求证:函数区间有且仅有一个零点;

2表示的最小值,设函数若关于方程其中常数在区间两个不相等的实根的零点为试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数,曲线为参数

1相交于两点

2若把曲线上各点的横坐标压缩为原来的纵坐标压缩为原来的得到曲线设点是曲线上的一个动点求它到直线距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前n项和,满足,正项等比数列的前n项和为,且满足.

() 求数列{an}和{bn}的通项公式; () 求数列{cn}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形, 平面 平面 .

(1)证明:平面平面

(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为

(1)求的值;

(2)若不等式的解集为,不等式的解集为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上为增函数,,为常数, .

(1)的值;(2)上为单调函数,的取值范围;

(3),若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,C90°DE分别为ACAB的中点,点F为线段CD上的一点.将ADE沿DE折起到A1DE的位置,使A1FCD,如图2.

1求证:DE平面A1CB

2求证:A1FBE

3线段A1B上是否存在点Q,使A1C平面DEQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点上一点到焦点的距离为.

(1)求的方程;

(2)过作直线,交两点,若直线中点的纵坐标为,求直线的方程.

查看答案和解析>>

同步练习册答案