精英家教网 > 高中数学 > 题目详情
已知数列中,,则数列通项___________。

    解析:  是以为首项,以

公差的等差数列,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列中,.

(1)求证:是等差数列;并求数列的通项公式;

(2)假设对于任意的正整数,都有,则称该数列为“域收敛数列”. 试判断: 数列是否为一个“域收敛数列”,请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。

  (1)证明:数列是“平方递推数列”,且数列为等比数列。

  (2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。

(3)记,求数列的前项之和,并求使的最小值。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省淄博市高三3月模拟考试理科数学试卷(解析版) 题型:解答题

若数列满足,则称数列平方递推数列.已知数列,点在函数的图象上,其中为正整数.

1)证明数列平方递推数列,且数列为等比数列;

2设(1)中平方递推数列的前项积为

,求

3)在(2)的条件下,记,求数列的前项和,并求使的最小值

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖北省等八校高三第一次联考文科数学试卷(解析版) 题型:解答题

若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.

(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;

(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求

(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第五次月考理科数学 题型:填空题

如果有穷数列a1,a2,…an(a∈N*)满足条件:,我们称

其为“对称数列”,例如:数列1,2,3,3,2,1和数列1,2,3,4,3,2,1都为“对称数列”。已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,……,2m-1依次为该数列中连续的前m项,则数列的前2009项和S2009所有可能的取值的序号为           

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步练习册答案