精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为F,过点F的直线l交抛物线于AB两点,以线段AB为直径的圆交x轴于MN两点,设线段AB的中点为Q.若抛物线C上存在一点到焦点F的距离等于3.则下列说法正确的是(

A.抛物线的方程是B.抛物线的准线是

C.的最小值是D.线段AB的最小值是6

【答案】BC

【解析】

求得抛物线的焦点和准线方程,运用抛物线的定义可得p,进而得到抛物线方程和准线方程;求得,设,直线l的方程为,联立抛物线方程,运用韦达定理和弦长公式可得线段AB的最小值,可得圆Q的半径,由中点坐标公式可得Q的坐标,运用直角三角形的锐角三角函数的定义,可得所求的最小值.

抛物线的焦点为,得抛物线的准线方程为

到焦点的距离等于3,可得,解得

则抛物线的方程为,准线为,故A错误,B正确;

由题知直线的斜率存在,

,直线的方程为

,消去

所以

所以,所以AB的中点Q的坐标为

,故线段AB的最小值是4,即D错误;

所以圆Q的半径为

在等腰中,

当且仅当时取等号,

所以的最小值为,即C正确,

故选:BC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥与直四棱柱组合而成的几何体中,四边形是菱形,平面的中点.

1)证明:平面

2)动点在线段上(包括端点),若二面角的余弦值为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1) 讨论的单调性;

(2) ,当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)设为函数的导函数,求函数的单调区间;

(Ⅱ)若函数上有最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ()的一个焦点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点为,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为,则( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点分别与两个定点的连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设过点的直线与轨迹交于两点,判断直线与以线段为直径的圆的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案